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Abstract

The recent breakthroughs in deep neural architectures across multiple machine learning
fields have led to the widespread use of deep neural models. These learners are often
applied as black-box models that ignore or insufficiently utilize a wealth of pre-existing
semantic information. In this study, we focus on the text classification task, investigating
methods for augmenting the input to deep neural networks with semantic information.
We extract semantics for the words in the preprocessed text from the WordNet seman-
tic graph, in the form of weighted concept terms that form a semantic frequency vector.
Concepts are selected via a variety of semantic disambiguation techniques, including a
basic, a part-of-speech-based and a semantic embedding projection method. Additionally,
we consider a weight propagation mechanism that exploits semantic relationships in the
concept graph and conveys a spreading activation component. We enrich word2vec embed-
dings with the resulting semantic vector through concatenation or replacement and apply
the semantically augmented word embeddings on the classification task via a deep neural
network. Experimental results over established datasets demonstrate that our approach of
semantic augmentation in the input space boosts classification performance significantly,
with concatenation offering the best performance. We also note additional interesting
findings produced by our approach regarding the behaviour of TF-IDF normalization on
semantic vectors, along with the radical dimensionality reduction potential with negligible
performance loss.
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1 Introduction

The rise of deep learning has been accompanied by a paradigm shift in machine

learning and intelligent systems. In Natural Language Processing applications, this

has been expressed via the success of distributed representations (Hinton et al.,

1984) for text data on machine learning tasks. These typically come in the form

of text embeddings, which are vector space representations able to capture fea-

tures beyond simple statistical properties, Such approaches try to evolve over the

histogram-based accumulation used in methods like the bag-of-words model (Salton

and Buckley, 1988). Instead of applying a hand-crafted rule, text embeddings learn

a transformation of the elements in the input. This approach avoids the common

problem of extreme feature sparsity and mitigates the curse of dimensionality that

usually plagues shallow representations.

There have been numerous approaches to learning text embeddings. Early at-

tempts produce shallow vector space features to represent text elements, such as

words and documents, via histogram-based methods (Katz, 1987), (Salton and

Buckley, 1988), (Joachims, 1998). Other approaches use topic modelling techniques,

such as Latent Semantic Indexing (Deerwester et al., 1990) and Latent Dirichlet

Allocation (Hingmire et al., 2013). In these cases, latent topics are inferred to form

a new, efficient representation space for text. Regarding neural approaches, a neu-

ral language model applied on word sequences is used in (Bengio et al., 2003) to

jointly learn word embeddings and the probability function of the input word col-

lection. Later approaches utilize convolutional deep networks, such as the unified

multi-task network in (Collobert and Weston, 2008), or introduce recurrent neu-

ral networks (RNNs), as in (Mikolov et al., 2011). Deep neural models are used to

learn semantically-aware embeddings between words. (Mikolov et al., 2010; Mikolov

et al., 2011) These embeddings try to maintain semantic relatedness between con-

cepts, but also support meaningful algebraic operators between them. The popu-

lar word2vec embeddings (Mikolov et al., 2013a) learn such embedding spaces via

Continuous Bag-Of-Words (CBOW) or skip-gram patterns, sometimes varying the

context sampling approach (Mikolov et al., 2013b).

Despite numerous successful applications of text embeddings, most approaches

largely ignore the rich semantic information that is often associated with the input

data. Typically, such information – e.g. in the form of knowledge bases and semantic

graphs – is readily available from human experts. This fact can function both as

an advantage and a disadvantage in learning tasks. On the one hand, if the learned

model is not restricted by human experts’ rules and biases, it is free to discover

potentially different (and often superior) intermediate representations of the input

data (Bengio and Others, 2009) for a given task. On the other hand, ignoring

the wealth of existing information means that any useful attribute is captured by

relearning from scratch, a process that requires large amounts of training resources.

We claim that we need to investigate hybrid methods, combining the best of both

worlds. As such, these methods will allow a model to search the feature space for

optimal representations, while being able to exploit pre-existing expert features. We

expect such a paradigm shift to affect a multitude of Natural Language Processing
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Fig. 1. Overview of our approach to semantically augmenting the classifier input vector.

tasks, from classification to clustering and summarization. Furthermore, it allows

researchers to utilize a full range of different structure over resources: raw text,

documents accompanied by meta-data and multimodal components (e.g., embedded

images, audio, etc.). However, we expect that the way of introducing semantic

information to the model will affect training and the performance of the learned

model on the task at hand.

In this context, this work suggests a method to integrate semantic informa-

tion into a neural classification pipeline, and evaluates the outcome. We model

the pipeline as a hybrid, branched architecture (cf. Figure 1), where each branch

corresponds to one aspect of the hybrid: semantically-driven vs. raw-data-driven.

Given an input text, the semantically-driven branch, elaborated in Section 3,

does the following:

• For each word it extracts semantic information from an appropriate resource

of existing knowledge, such as a semantic graph.

• It generates a semantic vector for the word.

• It represents the whole text as a fusion of the word semantic vectors.

The raw-data-driven branch, utilizes raw data information to generate a word em-

bedding as we find in many deep learning related works. Finally, we augment the

word embedding output representations by the semantic vector, feeding the result-

ing enriched, hybrid representation to a deep neural network (DNN) classifier.

Based on this formulation, we address the following research questions in the

context of the single-label text classification task:

1. Can semantic information increase the task performance, when applied in this

setting? If so, how much?

2. How much do the different semantic disambiguation methods affect the above

performance increase?



4 N. Pittaras et al.

3. What is the effect of taking into account hypernymy relations in the semantic

branch of the representation?

The rest of the paper is structured as follows. Section 2 surveys relevant works

on semantic augmentation methods for classification problems, as well as the main

techniques for enriching word embeddings with semantic information. In Section

3, we elaborate on our method, describing (a) the embeddings generation; (b) the

semantic information extraction; and (c) the vector augmentation steps. Section 4

presents the experimental study that evaluates the performance of our workflow and

compares it to the state-of-the-art in the field. It also addressing the above three

research questions based on the results. We conclude the paper with a summary of

our key findings along with directions for future work in Section 6.

2 Related work

In this study, we explore the introduction of semantic information into text-based

embeddings, in the context of single-label text classification. Given a collection of

text documents T = {t1, . . . , tN}, a set of c predefined labels L = {l1, . . . , lc} and

existing document-to-label annotations G = {(t1, g1), . . . , (tN , gN )}, gi ∈ L such

that the label of document ti is gi, the task is to find a classification function f

that produces the correct label for each input document, i.e., f(ti) = gi.

Specifically, we focus on DNN classifiers in conjunction with word embeddings

for representing and feeding the input text to the predictive model.

In the literature, numerous studies leverage semantic knowledge to augment text

mining tasks. For classification, graph-based semantic resources such as the Word-

Net ontology (Miller, 1995) have been widely used to enrich textual information.

Early approaches examined the effect of WordNet’s semantic information on bi-

nary text classification, using rule-based discrimination (Scott and Matwin, 1998)

as well as SVM classification (Mansuy and Hilderman, 2006). In (Elberrichi et al.,

2008), the bag-of-words vector representation (Salton and Buckley, 1988) is com-

bined with the WordNet semantic graph. A variety of semantic selection and com-

bination strategies are explored, along with a supervised feature selection phase

that is based on the chi-squared statistic. The experimental evaluation on the 20-

Newsgroups and Reuters datasets shows that the semantic augmentation aids clas-

sification, especially when considering the most frequent related concept of a word.

Frequency-based approaches are examined in (Nezreg et al., 2014) over the same two

datasets, applying multiple classifiers to terms, WordNet concepts and their com-

bination. The combined approach yields the best results for both datasets, however

(a) it uses handcrafted features for the representation of textual information; (b) it

employs shallow methods for classification and (c) it considers subsets of the two

datasets.

On another line of research, neural methods are coupled with relationships from

the WordNet semantic graph (Morin and Bengio, 2005), producing a language

model where words are represented in a binary tree via hierarchical clustering –

rather than deriving such a hierarchy from training data. The resulting model
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trains faster and performs better than the bag-of-words baselines, but worse than

the neural language model of (Bengio et al., 2003).

A bulk of later works modify the deep neural embedding training, with many

of them investigating ways of introducing both distributional and relational infor-

mation into word embeddings. Distributional information pertain to statistics from

the context of a word, while relational information utilizes semantic relationships

such as synonymy and hypernymy.

In more detail, the “retrofitting” method is used in (Faruqui et al., 2015) to shift

word embeddings towards points in the embedding space that are more suitable to

represent semantic relationships within an undirected graph. This is accomplished

by post-processing the existing word vectors to balance their distance between

their original fitted values and their semantic neighbours. The experimental anal-

ysis demonstrates the resulting improvements on the embeddings in a multilingual

setting, with respect to a variety of semantic-content tasks. The retrofitting system

is specialized in (Glavaš and Vulić, 2018) via a feed-forward DNN that explicitly

maps semantic / relational constraints into modified training instances to produce

specialized embeddings. The authors report significant gains in a series of tasks

that range from word similarity to lexical simplification and dialog state tracking.

The study in (Yu and Dredze, 2014) extends the neural language model of (Ben-

gio et al., 2003) and (Mikolov et al., 2010) with semantic priors from WordNet

and Paraphrase (Ganitkevitch et al., 2013). Their “Relation Constrained Model”

(RCM) modifies the Continuous Bag-of-words (CBOW) (Mikolov et al., 2013b) al-

gorithm, by modifying the objective function to consider only word pairs joined by

a relation defined in the semantic ground truth. Additionally, they explore a joint

model where the objective function considers a weighted linear combination of both

corpus co-occurrence statistics and relatedness based on the knowledge resource.

An experimental evaluation on language modeling, semantic similarity and human

judgement prediction over a subset of the Gigaword corpus (Parker et al., 2011)

demonstrates that using the joint model for pre-training RCM results in the largest

performance increase, with respect to standard word2vec embeddings.

In (Fried and Duh, 2014), the authors model semantic relatedness by computing

the length of the shortest path between WordNet synsets. This is mapped to a

word pair by considering the maximum possible distance between candidate synset

pairs associated with these words. A scaled version of this length regularizes the

cosine similarity of the word pair corresponding word embeddings. Both distribu-

tional and semantic information are jointly trained via the ADMM multi-objective

optimization approach (Boyd et al., 2011). The authors evaluate their graph dis-

tance measure – along with other WordNet distance approaches – on multiple tasks,

such as knowledge base completion, relational similarity and dependency parsing.

The overall results indicate that utilizing semantic resources provide a performance

advantage, compared to using text-only methods.

In (Vulic and Mrkšic, 2018), embeddings are fine-tuned to respect the WordNet

hypernymy hierarchy and a novel asymmetric similarity measure is proposed for

comparing such representations. This results in state-of-the-art performance on

multiple lexical entailment tasks.
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Furthermore, the authors in (Xu et al., 2014) use skip-grams with relational,

categorical as well as joint semantic biases in the objective function. To achieve

this, they model a relation r between entities a and b as vector translation (e.g.

a+ r = b), i.e. modelling both entities and relations in the same vector space. Cat-

egorical knowledge is limited to fine-grained similarity scores, after discarding too

generic entity relationships. All variants are evaluated on analogical reasoning, word

similarity and topic prediction tasks, with the experimental results demonstrating

that the joint model outperforms its single-channel counterparts (the semantically-

aware networks and baseline skip-gram embeddings). In (Bian et al., 2014), the

authors use external resources to introduce syntactic, morphological and semantic

information into the generation of embeddings. Experimental results on analogical

reasoning and word similarity sentence completion show that the semantic augmen-

tation is the most reliable augmentation approach, compared to a CBOW baseline,

with the other resources producing inconsistent effects on performance. The ap-

proach in (Luong et al., 2013) exploits morphological characteristics by training a

recursive neural network at the level of a morpheme, rather than a word, which

allows for generating embeddings for unseen words on-the-fly. The authors report

large gains on the word similarity task across several datasets. Other approaches

to fine-tuning embeddings seek to produce robust feature vectors with respect to

language characteristics (Ruder et al., 2019), instead of enforcing explicit semantic

relationships.

Some approaches apply their findings on text and/or document classification.

The authors in (Card et al., 2018) propose a neural topic modelling framework

that is able to incorporate metadata such as annotations / tags as well as docu-

ment “covariates” (e.g., year of publication), with tunable performance trade-offs.

Experiments over a US immigration dataset show that this approach outperforms

supervised LDA (Mcauliffe and Blei, 2008) on document classification. In (Li et al.,

2017), the authors use a document-level embedding that is based on word2vec and

concepts mined from knowledge bases. They evaluate their method on dataset splits

from 20-Newsgroups and Reuters-21578, but this evaluation uses limited versions

of the original datasets.

To tackle word polysemy and under/mis-representations of semantic relationships

in the training text, many approaches build embeddings for semantic concepts (or

“senses”), instead of words. Such “sense embedding” vectors are studied in (Chen

et al., 2014), where the authors emphasize the weaknesses of distributional, cluster-

based models like the ones in (Huang et al., 2012). Instead, they use skip-gram

initialized word embeddings, aggregated to sense-level vectors by combining synset

definition word vectors from WordNet. Word sense disambiguation (WSD) is per-

formed via a context vector, with strategies based on word order or candidate sense

set size, for each ambiguous word. Learning uses the skip-gram objective imbued

with sense prediction. Evaluations on domain-specific data (i.e. small portion of

the Reuters corpus) for coarse-grained semantic disambiguation (corresponding Se-

mEval 2007 task (Navigli et al., 2007)) show that the proposed model performs

similar to or above the state of the art, with the authors stressing the reusability

of their approach.
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In (Iacobacci et al., 2015), the authors introduce “Sensembed”, a framework that

generates both semantic annotation tags for a given dataset and sense-level embed-

dings from the resulting annotated corpus. In their approach, the BabelNet semantic

graph (Navigli and Ponzetto, 2012) is used to annotate a Wikipedia dump so as

to create a large semantically-annotated corpus via the BabelFly WSD algorithm

(Moro et al., 2014). Out of the disambiguated corpus, sense vectors are produced

with the CBOW model (Mikolov et al., 2013b). These vectors are subsequently

evaluated in multiple word similarity, relatedness and word-context similarity tasks

on multiple datasets. SensEmbed outperforms lexical word embeddings, as well as

many related sense-based approaches on word similarity, with respect to Spearman

correlation. It also performs better than mutual information-based baselines and

word2vec embeddings on the SemEval-2012 relational similarity task (Jurgens et al.,

2012). SensEmbed is used in (Bovi et al., 2015), where the knowledge base disam-

biguation and unification framework “KB-UNIFY” employs sense embeddings for

the disambiguation stage, along with cross-resource entity linking and alignment, so

as to unify and merge semantic resources. In (Flekova and Gurevych, 2016), the au-

thors employ WordNet supersenses, i.e., flat groupings of synsets, denoting synset

high-level and more abstract semantic information that regular WordNet entities.

BabelNet synsets are mapped to WordNet supersenses, using an automatically an-

notated Wikipedia corpus at multiple abstraction levels (Scozzafava et al., 2015).

A range of evaluations on downstream classification tasks (subjectivity, metaphor,

polarity classification) demonstrates that the proposed approach yields state of the

art results, outperforming the exclusive use of distributional information. Further,

the “AutoExtend” method (Rothe and Schütze, 2015) uses WordNet, considering

words and synsets as a sum of their lexemes. Word embeddings are learned (or ex-

isting ones are modified) by a deep autoencoder, with the hidden layers representing

synset vectors. Experiments on WSD, using the SensEval task corpora, show that

AutoExtend achieves higher accuracy than an SVM-based approach with multiple

engineered semantic features, with a subsequent combination of the two approaches

further improving performance – indicating complementarity between them. In ad-

dition, an evaluation on word similarity shows that AutoExtend outperforms other

systems ((Huang et al., 2012; Chen et al., 2014; Mikolov et al., 2013b)) as well as

synset-level embeddings, in terms of Spearman’s correlation. In (Goikoetxea et al.,

2016), semantic embeddings are computed independently: a probabilistic random

walk over the semantic graph outputs sequences of synsets, with the latter mapped

to words via a dictionary of WordNet gloss relations. The resulting pseudo-corpus is

fed to the skip-gram algorithm to learn semantic embeddings. Lexical and semantic

vectors are subsequently combined in various ways, with simple concatenation out-

performing more sophisticated semantic augmentation methods such as retrofitting,

on similarity and relatedness datasets and tasks.

The approach in (Pilehvar et al., 2017) examines the effect of sense and supersense

information on text classification and polarity detection tasks. Disambiguation is

performed by mapping the input sentence into a subgraph of the semantic resource

containing all semantic candidates per word. Then, the sense with the highest node

degree is picked for each word, discarding the rest and pruning the subgraph ac-
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cordingly. Additionally, supersenses are produced via averaging synset vectors with

respect to the grouping of senses provided in WordNet lexicographer files. An ex-

perimental evaluation over the BBC, 20-Newsgroups and Ohsumed datasets shows

that their approach introduces significant benefits in terms of F1-score, consistently

improving the lexical embedding baseline on randomly initialized vectors. However,

no improvement is observed when using pre-trained embeddings. For polarity detec-

tion, no consistent improvement is reported either. This is attributed to the short

document sizes and the lack of word ambiguity in the examined datasets.

These approaches effectively introduce semantic information to deep neural ar-

chitectures and word embeddings, but the evaluation of the refined embeddings on

applied machine learning scenarios is limited, focusing for the most part on a vari-

ety of semantic similarity tasks or specialized, domain-specific classification tasks.

Instead, this study focuses on a specific machine learning task, namely text classifi-

cation, exploring the effect of semantic augmentation on deep neural models to the

classification performance. Our worked is focused on the feature level, applying se-

mantic enrichment on the input space of the classification process. We separate the

embedding generation from the semantic enrichment phase, as in (Faruqui et al.,

2015), where the semantic augmentation can be applied as a post-processing step.

In fact, we model the semantic content as a separate representation of the input

data that can be combined with a variety of embeddings, features and classifiers.

Our approach extends earlier work on shallow features and learners (Elberrichi

et al., 2008; Nezreg et al., 2014; Scott and Matwin, 1998; Mansuy and Hilderman,

2006) by augmenting deep embedding generators instead of local features. We also

expand our investigation to additional semantic extraction and disambiguation ap-

proaches, by considering the effect of the n-th degree hypernymy relations and of

several context semantic embedding methods. Finally, we expand and complement

the findings of (Pilehvar et al., 2017), adopting multiple disambiguation schemes

and a comparatively lower complexity architecture for classification.

3 Approach

We now delve into our approach for introducing external semantic information into

the neural model. We present the textual (raw text) component of our learning

pipeline in Section 3.1, the semantic component in Section 3.2 and the training

process that builds the classification model in Section 3.3.

3.1 Text preprocessing and embedding generation

We begin by applying preprocessing to each document in order to discard noise

and superfluous elements that are deemed irrelevant or even harmful for the task

at hand. The processing tokenizes the original texts into a list of words and dis-

cards non-lexical elements such as punctuation, whitespace and stopwords1. To gen-

erate word embeddings, we employ the established word2vec algorithm (Mikolov

1 For stopwords removal, we use a popular list from (Porter, 2006).
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Fig. 2. Example of the basic disambiguation strategy. Given the list of candidate

synsets from the NLTK WordNet API, the first item is selected.

et al., 2013b). Specifically, we use the Continuous Bag-of-Words (CBOW) variant

for the training process, which produces word vector representations by modelling

co-occurrence statistics of each word based on its surrounding context. Instead of

using pre-trained embeddings, we extract them from the given corpus, using a con-

text window size of 10 words. To discard outliers, we also apply a filtering phase,

which discards words that fail to appear at least twice in the training data. We train

the embedding representation over 50 epochs (i.e., iterations over the corpus), pro-

ducing 50-dimensional vector representations for each word in the resulting dataset

vocabulary. These embeddings represent the textual / lexical information of our

classification pipeline.

3.2 Semantic enrichment

We now elaborate on the core of our approach, which infuses the trained embed-

dings with semantic information. First, we describe the semantic resource we use,

WordNet. Then we introduce the semantic disambiguation phase which, given a

word, selects a single element from a list of WordNet concepts as appropriate for

the word. We continue with a description of the propagation mechanism we apply

to spread semantic activation, i.e. to include more semantic information related to

the concept in the word representation. We conclude with the fusion strategy by

which we combine all information channels to a single, enriched representation.

3.2.1 Semantic resource

We use WordNet (Miller, 1995)2, a popular lexical database for the English lan-

guage that is widely used in classification and clustering tasks (Hung and Wermter,

2004; Morin and Bengio, 2005; Liu et al., 2007; Elberrichi et al., 2008). WordNet

consists of a graph, where each node is a set of word senses (called synonymous

sets or synsets) representing the same approximate meaning, with each sense also

conveying part-of-speech information.

2 See also https://wordnet.princeton.edu/
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Synset nodes are connected to neighbours through a variety of relations of lexical

and semantic nature (e.g., is-a relations like hypernymy and hyponymy, part-of

relations such as meronymy, and others). Note that while the terms “synset” and

“concept” are similar enough to merit interchangeable use, we will use the word

“concept” throughout the paper when not talking about the internal mechanics of

WordNet.

Concerning WordNet synsets, in the following paragraphs we employ a notation

inspired by (Navigli, 2009), as follows. In WordNet, the graph node encapsulating

the everyday concept of a dog is a synset s, composed of individual word senses of

near-identical semantic content, as below:

s =
{
dog1n, domestic dog1n, Canis familiaris1n

}
The subscript of each word sense denotes POS information (e.g. nouns, in this

example), while the superscript denotes a sense numeric identifier, differentiating

between individual word senses. Given a word sense, we can unambiguously identify

the corresponding synset, enabling us to resolve potential ambiguity (Martin and

Jurafsky, 2009; Navigli, 2009) of polysemous words. Thus, in the following para-

graphs we will use the notation l.p.i to refer to the synset that contains the i-th

word sense of the lexicalization l that is of a part-of-speech p.

For example, the common meaning of the word “dog” is approximately aligned

with any of the word senses in the synset s, which in WordNet is accompanied by a

definition: “a member of the genus Canis (probably descended from the common wolf

that has been domesticated by man since prehistoric times; occurs in many breeds”.

However, additional, more obscure senses of “dog” can be found in WordNet – e.g.

dog3n, mapped to the synset defined as “informal term for a man”3.

Thus, synset s will be referred to as dog.n.01, directly pointing to the (first) word

sense of the word noun “dog”4. Using this notation, we move on to describe the

disambiguation process.

3.2.2 Disambiguation

We extract information from WordNet via the NLTK interface 5. Its API supports

the retrieval of a collection of synsets as possible semantic candidates for an input

word. It also allows traversal of the WordNet graph via the synset relation links

mentioned above. Below we will denote string literals with a quoted block of text

(e.g. “dog”).

To select the most relevant synset from the acquired response of the API, we

employ one of the following three disambiguation strategies:

1. The basic disambiguation strategy serves as a baseline, simply selecting the

first synset from the retrieved list, discarding the rest. The NLTK WordNet

3 As in phrases like “You lucky dog!”.
4 This notation is also the one employed by the WordNet interface used in our semantic

extraction process, the description of which follows.
5 https://www.nltk.org/data.html
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Fig. 3. Example of the POS disambiguation strategy. Given the candidate synsets re-

trieved from the NLTK WordNet API, the ones that are annotated with a part-of-speech

tag that does not match the respective tag of the query word are discarded. After this

filtering process, the basic selection strategy is applied.

API ranks the retrieved synsets for a word query with respect to corresponding

word sense frequencies computed in the SemCor sense-tagged corpus (Miller

et al., 1993; Martin and Jurafsky, 2009; Navigli, 2009). Therefore, this method

selects the most common meaning for the word (as computed in the SemCor

text collection). An illustration of this selection process is shown in Figure 2.

2. The POS disambiguation strategy first filters the retrieved list of candidate

synsets. The filtering discards all synsets that do not match the part-of-speech

(POS) tag of the query word. Then the first remaining synset is selected.

For example, when the word “can” is supplied with the POS tag “verb”, the

synset defined as “airtight sealed metal container for food or drink or paint

etc.” is discarded from the candidate synset list. After this filtering phase,

the same mechanism as with the basic disambiguation process is applied. See

Figure 3 for a visualization of this process.

3. The context-embedding disambiguation strategy uses a semantic embedding

approach. For each candidate synset, related words are extracted from the

accompanying example sentences together with the corresponding synset def-

inition (i.e. the gloss).6 Given the set of words from both sources, we compute

the embedding mapping via the process described in Section 3.1. This asso-

ciates every candidate synset with the set of embeddings of all words in its

context.

To arrive at a single vector representation for every candidate synset, this

strategy averages all components across word embeddings in the context. This

process maps the semantic information into a shared representation with the

6 For instance, the example sentence for the synset dog is “The dog barked all night”,
while its definition was quoted in Section 3.2.1. Note that we consider synset definition
sentences in addition to the WordNet examples, because around 70% of all synsets are
associated with a single example.
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lexical / textual one. In other words, it projects synsets into the same vector

space. As a result, disambiguation by vector comparison is enabled: given a

word w, its embedding ew and a set of synset embeddings S = {e1, . . . , e|S|},
we assign w to the synset s = argmin

S
[dist(ew, es)], where es is the aggregated

synset embedding for synset s ∈ S and dist(·, ·) denotes a vector distance

metric.

To ensure adequate word context for generating representative semantic em-

beddings, we discard all synsets with fewer than 25 context words. The synset

vector computation process from the whole WordNet, which is illustrated in

Figure 4, results in 753 adequately represented synsets. The disambiguation

process itself is depicted in Figure 5.

Overall, the context-embedding disambiguation strategy performs synset selec-

tion in a significantly more complicated manner than the other two strategies.

Rather than using low-level lexical information (basic strategy) or lexical and

syntactic features (POS strategy), this approach exploits the available dis-

tributional information in WordNet in order to match the input word to a

synset.

This strategy bears some resemblance to other embedding-based disambigua-

tion methods in the literature. However, given (a) the paper’s focus on the

downstream task of classification and (b) the multiple other disambiguation

strategies examined, we decided to build a straightforward approach as de-

scribed above; this way, we managed to reduce both the number of decision

points (thus largely avoiding heuristics engineering and metaparameter opti-

mization) as well as the computational requirements of this embedding-based

disambiguation approach, in favor of a more robust, readily applicable algo-

rithm. Comparatively, an example of a similar embedding-based approach is

the work in (Chen et al., 2014), where the authors build synset embeddings via

a process that includes averaging vectors of words that are related to Word-

Net synsets. However, their method is considerably more intricate compared

to ours, since in their approach (i) semantic vectors are additionally fitted,

with the aforementioned scheme being used just for sense vector initialization,

(ii) a filtering step is used to process the WordNet gloss text prior to vector

initialization, using a predefined subset of POS tags and iii) only words with

representations close to the candidate word in a embedding space are consid-

ered, using a distance / similarity threshold. In contrast, context-embedding

directly pools all available textual resources that accompany a synset in order

to construct an embedding, i.e. utilizing all available distributional informa-

tion WordNet has to offer. Additionally, no further fitting is applied to the

resulting embedding, but it is used as-is in the downstream classification task

for disambiguation purposes (i.e. to retrieve the synset that will be used in

the actual semantic information extraction component).
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Fig. 4. Example of the synset vector generation for context-embedding disambiguation

strategy. The context of each synset is tokenized into words, with each word mapped to a

vector representation via the learned embedding matrix. The synset vector is the centroid

produced by averaging all context word embeddings.

Fig. 5. Example of the disambiguation phase of the context-embedding disambiguation

strategy. A candidate word is mapped to its embedding representation and compared to

the list of available synset vectors. The synset with the vector representation closest to

the word embedding is selected.

3.2.3 n−level hypernymy propagation

Since WordNet represents a graph of interconnected synsets, we can exploit mean-

ingful semantic connections to activate relevant neighbouring synsets among the

candidate ones. In fact, our approach propagates activations further than the imme-

diate neighbours of the retrieved candidate synsets, to a multi-step, n-level relation

set. This way, a spreading activation step (Collins and Loftus, 1975) propagates

the semantic synset activation towards synsets connected with hypernymy rela-

tions with the initial match. In other words, it follows the edges labelled with is-a

relations to include the encountered synsets in the pool of retrieved synsets.

The synsets extracted with this process are annotated with weights inversely

proportional to the distance of the hypernymy level from the original synset. This
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weight decay is applied to diminish the contribution of general and/or abstract

synsets, which are expected to be encountered frequently, thus saturating the final

semantic vector.

After a hyper-parameter tuning phase, we arrived at the configuration of a 3-level

propagation process, with each level associated with a weight decay factor of 0.6.

This mechanism enables words to share semantic information even if they do not

belong to the same synset directly, but their mapped synsets can be linked via a

short walk in the semantic graph – the longer the path, the lower the resulting

relatedness weight.

To illustrate the spreading activation mechanism, consider querying the NLTK

WordNet interface with the input word “dog” as an example. Using the basic disam-

biguation strategy (cf. Section 3.2.2), the first synset is selected out of the retrieved

list – i.e. is the synset dog.n.01 =
{
dog1n, domestic dog1n, Canis familiaris1n

}
and

is valued with a unit weight. Subsequently, our spreading activation procedure is

activated and operates as follows:

- The first step yields the direct hypernyms of the synset dog.n.01 in the Word-

Net graph: h1 = {x|dog.n.01 is-a x} = {canine.n.02, domestic animal.n.01},
with canine =

{
canine2n, canid

2
n

}
and domestic animal.n.01 =

{domestic animal1n, domesticated animal1n}. These two synsets are thus

assigned a weight of 0.61 = 0.6.

- Next, we retrieve the hypernyms of each synset in h1. This yields the synsets

h2={carnivore.n.01, animal.n.01}, each weighted with 0.62 = 0.36.

- Finally, the third step produces the synsets h3 =

{placental.n.01, organism.n.01}, each with a weight of 0.63 = 0.216.

As a result, the result of the 3-level spreading activation procedure on the word

“dog” is a semantic vector with values: [1, 0.6, 0.6, 0.36, 0.36, 0.216, 0.216] corre-

sponding to weights for the synsets [dog.n.01, canine.n.02, domestic animal.n.01,

carnivore.n.01, animal.n.01, placental.n.01, organism.n.01]. This example is also

illustrated in Figure 6. Having this mapping of word to name-value collections, the

next section describes the procedure by which the word-level information is fused

to arrive at document-level vectors.

3.2.4 Fusion

As explained above, each semantic extraction process yields a set of concept-

weight pairs for each word in the document. We want a single, constant length,

semantic vector for each document. Thus, we form this vector by following a bag-

of-synsets/concepts approach: we create a vector space where each dimension is

mapped to one of the concepts discovered in the corpus; then we apply the seman-

tic extraction to all documents in the corpus, mapping each of these documents in

the space based on the frequency of a concept in the document. Thus, similar to

the bag-of-word paradigms, we can generate two different vector types:

1. We consider the raw concept frequencies over each document, arriving at
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Fig. 6. Example of the spreading activation process for the input word “dog”, executed for

3 levels with a decay factor of 0.6. The solid line (a) denotes the semantic disambiguation

phase with one of the covered strategies. Dashed lines ((b) through (d)) represent the

extraction of synsets linked with a hypernymy (is-a) relation to any synset in the source

list. The numeric values represent the weight associated to synsets of each level, with the

final semantic vector for the input word being listed to the right.

semantic vectors of the form s(i) = {s1, s2, . . . , sd}, where s
(i)
j denotes the

frequency of the j-th concept in the i-th document. A concept in the seman-

tic vector appears at least once in the training dataset. Note that concepts

extracted from the test dataset, which do not appear in the training dataset

are discarded.

2. We apply a weighting scheme similar to TF-IDF (Salton and Buckley, 1988)

at the document and corpus levels, i.e., by normalizing the document-level

concept frequencies with the corresponding corpus-level frequencies: w
(i)
j =

s
(i)
j /Σk∈[0,...N ]s

(k)
j , where s

(i)
j stands for the raw frequency of the j-th concept

in the i-th document, N is the number of documents in the dataset and w(i) is

the final TF-IDF concept weight in the i-th document. This process reduces

the importance of concepts that appear in too many documents in the corpus,

similar to weight discounting of common words in a text retrieval setting.

After this post-processing stage, we are ready to incorporate the semantic vector

into the classification pipeline. This is done in two ways:

1. The concat fusion strategy concatenates the embedding with the semantic

vector, arriving at a semantically augmented representation that is fed to the

downstream classifier.

2. The replace fusion strategy discards completely the lexical embedding, using

only the semantic information for tackling the categorization task.

Since all cases above use semantic features that represent explicit concept-weight

information (rather than explicitly distributed vectors), we do not fine-tune the

augmented embeddings during training but keep the entire representation “frozen”

to the original input values.
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3.3 Training

We use a deep neural network (DNN) with 2 hidden layers, each containing 512 neu-

rons. We arrived at this configuration after fine-tuning these two hyper-parameters

through a grid search on a range of values: from 1 to 4 with a step of 1 for the num-

ber of hidden layers; values of {128, 256 . . . , 2048} for the number of neurons within

each hidden layer. We use dropout with a heuristically selected 0.3 drop probability

and position it after each dense layer to avoid overfitting. We train the DNN for

50 epochs over the total training data, with a 25-epoch early stopping, which al-

lows the training to end prematurely, if the validation loss does not decrease for 25

consecutive epochs. We apply a 5-fold cross-validation split for training, classifying

the input via a softmax layer. The learning rate is initialized to 0.1, applying a

reduction schedule of a 0.1 decay factor every 10 epochs on loss stagnation.

3.4 Workflow summary

At this point we summarize the complete workflow of our approach to put every-

thing we have described together, under a common view:

1. Preprocessing transforms each document into a sequence of informative words.

2. word2vec word embeddings are learned from scratch on these word sequences.

3. Semantic information for each document is extracted via the NLTK WordNet

interface in the form of frequency-based concept vectors. This entails:

(a) Concept extraction for each word by one of the disambiguation strategies

(basic, POS or context-embedding).

(b) 3-level hypernymy activation propagation based on the WordNet graph.

(c) Raw-frequency or TF-IDF weighting.

4. The semantic information from Step 3 is combined with the word embeddings

from Step 2 through a fusion strategy (concat or replace).

5. Classification with a DNN classifier.

The above workflow is illustrated in Figure 7.

4 Experimental evaluation

In this section, we outline the experiments performed to evaluate our semantic

augmentation approaches for text classification. In Section 4.1, we describe the

datasets and the experimental setup, in Section 4.2, we present and discuss the

obtained results, and in Section 4.3, we compare our approach to related studies.

4.1 Datasets and experimental setup

We use the 20-Newsgroups dataset (Lang, 1995)7, a popular text classification

benchmark. This corpus consists of 11, 314 and 7, 532 training and test instances of

7 http://qwone.com/~jason/20Newsgroups/
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Fig. 7. An example of the semantic augmentation process, leading up to classification

with a DNN classifier. The image depicts the case of concat fusion, i.e., the concatenation

of the word embedding with the semantic vector. The dashed box is repeated for each word

in the document. Green / red colors denote semantic / textual information, respectively.

user USENET posts, spanning 20 categories (or “newsgroups”) that pertain to dif-

ferent discussion topics (e.g. alt.atheism, sci.space, rec.sport.hockey, comp.graphics,

etc.). The number of instances per class varies from 377 to 600 for the training set,

and from 251 to 399 for the test set, while the mean number of words is 191 and

172 per training and test document, respectively. We use the “bydate” version, in

which the train and test samples are separated in time (i.e., the train and the test

set instances are posted before and after a specific date).

Additionally, we utilize the Reuters-215788 dataset, which contains news articles

that appeared on the Reuters financial newswire in 1987 and are commonly used for

text classification evaluation. Using the traditional “ModApte” variant, the corpus

8 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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comprises 9, 584 and 3, 744 training and test documents, respectively, with a labelset

of 90 classes. The latter correspond to categories related to financial activities,

ranging from consumer products and goods (e.g. grain, oilseed, palladium) to more

abstract monetary topics (e.g. money-fx, gnp, interest). The dataset is extremely

imbalanced, ranging from 1 to 2, 877 training instances per class, and from 1 to

1, 087 test instances per class. The mean number of words is approximately 92, for

both training and test documents. Most instances are labelled with a single class,

with few of them having a multi-label annotation (up to 15 labels per instance).

While hierarchical relationships exist between the classes, we do not consider them

in our evaluation.

Given that we are only interested in single-label classification, we treat the dataset

as a single-labelled corpus by using all sample and label combinations that are

available in the dataset. This results into a noisy labelling that is typical among

folksonomy-based annotation (Peters and Stock, 2007). In such cases lack of annota-

tor agreement occurs regularly and increases the expected discrimination difficulty

of the dataset, as we discard neither superfluous labels nor multi-labelled instances.

The technical details of each dataset are summarized in Table 1. Apart from sam-

ple and word count information, we additionally include: (a) quantities pertaining

to the part-of-speech information useful for the POS disambiguation method; (b)

the amount of semantic information minable from the text. The POS annotation

count and the synset/concept counts are expressed as ratios with respect to the

number of words per document.

We note that no contextual or domain-specific information is employed in our ex-

periments; reflected by the broad task handled in this work (i.e. text classification),

both datasets are handled in an identical manner by every configuration examined

in the experimental evaluation in the following section. This decision introduces

an applicability / performance tradeoff: first, the lack of special treatment enables

each configuration to be readily applicable to any dataset, with the experimen-

tal evaluation better reflecting the generalization capability of the approach. This

translates to a single processing pipeline for all datasets, without over-engineered

solutions on case-specific details. On the other hand, such a strategy may sacrifice

performance gains attainable via accommodating domain or dataset-specific issues.

However, we believe that demonstrating the generalization ability of the process is

more important and, thus, we focus on this aspect in the experiments.

We used python with Keras9 (Chollet et al., 2015) and TensorFlow10 (Abadi et al.,

2016) to build the neural models. All experiments are reproducible via the code

that is available on GitHub11. Document pre-processing was performed with Keras

and NLTK12 (Loper and Bird, 2002). We use WordNet version 3.0 for semantic

9 https://keras.io/
10 https://www.tensorflow.org/
11 https://github.com/npit/nlp-semantic-augmentation/tree/jnle
12 https://www.nltk.org/
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20-Newsgroups Reuters

attribute train test train test

samples 11,314 7,532 9,584 3,744

class samples 377 - 600 251 - 399 1 - 2,877 1 - 1,087

words 191.164 (587.7) 172.196 (471.37) 92.532 (92.03) 92.899 (105.25)

POS 0.716 (0.07) 0.713 (0.06) 0.672 (0.10) 0.669 (0.10)

WordNet 0.572 (0.09) 0.566 (0.09) 1.479 (0.37) 1.381 (0.38)

Table 1. Technical characteristics of the 20-Newsgroups and Reuters datasets. Class

samples refers to the range of the number of instances per class, while the last three

rows report mean values, with the corresponding standard deviation in parenthesis.

The values in the last two rows (POS, WordNet) are expressed as ratios with respect

to the number of words per document.

information extraction via the interface available in NLTK13. The datasets and

semantic resources were acquired via the scikit-learn14 and NLTK APIs15.

4.2 Results

We now present the results of our experimental evaluation, discussing the perfor-

mance of each method per dataset.

4.2.1 20-Newsgroups

In the following tables, we present results in accuracy and macro F1-score (columns

“accuracy” and “ma-f1”, respectively), in terms of mean values over 5 folds. We

omit standard deviation scores in favor of compactness and since they consistently

fall below 0.005. In the “enrichment” column, the concatenation of the embed-

ding and the semantic vector is denoted by “concat”, whereas “replace” indicates

the replacement of the former with the latter. The “features” column reports the

use of raw concept frequencies (“freq”) or TF-IDF weights (“tfidf”). The “disam”

column indicates the disambiguation strategy, i.e. “basic”, “POS” and “context”

corresponding to basic, POS content-embedding respectively. The “+spread” suffix

denotes the use of the spreading activation that is outlined in Section 3.2.2. Fi-

nally, the dimensionality of each data vector is reported in the “dim” column. All

results are obtained by training and evaluating the DNN model that is described in

Section 3.3. Note that we include two baseline methods: the first row corresponds

to the majority classifier, which always selects the class with the most samples in

13 http://www.nltk.org/howto/wordnet.html
14 https://scikit-learn.org/stable/datasets/index.html
15 https://www.nltk.org/book/ch02.html
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the training dataset, while the second row corresponds to word2vec embeddings,

without any semantic augmentation applied in the vector (“embedding-only”).

In Table 2, we present the experimental results for the 20-Newsgroups dataset,

which give rise to the following observations:

• The introduction of semantic information brings gains in both accuracy and

macro F1-score. The best combination concatenates raw frequency-based con-

cept vectors to the word embeddings, with disambiguation applied according

to the basic selection strategy.

• Regarding the concept selection method, projecting semantic vectors in the

embedding vector space does not improve performance. Part-of-speech filter-

ing yields marginally inferior results than selecting the first retrieved synset

from the WordNet API, which is the simplest and best-performing approach.

• The 3-rd order hypernymy propagation via the spreading activation mech-

anism does not improve the baseline semantic augmentation in a consistent

manner.

• Concatenating the word embedding with the semantic vector consistently

outperforms the replacement of the former with the latter to a large extent.

• Raw concept frequencies always outperform the TF-IDF normalized weights.

Given these results and observations, we move on to an error analysis of

our system by examining the performance of our best-performing configuration

in more detail. To this end, Figure 8(a) illustrates the classification error via

the confusion matrix for the best-performing configuration. To aid visualization,

the diagonal has been removed. We observe that misclassification is approxi-

mately fairly concentrated in the first 6 classes16 (i.e., alt.atheism, comp.graphics,

comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware and

comp.windows.x ), with peaks appearing at classes 15 and 16 (soc.religion.christian

and talk.politics.guns, respectively). Additionally, Figure 8(b) depicts the label-wise

performance for the best-performing configuration. We can see that most labels per-

form at an F1-score above a value of 0.6, with class 10 (rec.sport.hockey) being the

easiest to handle by our classifier and class 19 (talk.religion.misc) being the most

difficult.

Furthermore, Table 3 presents indicative misclassification cases selected from the

erroneous prediction of our best-performing configuration. A number of patterns

and explanations in these errors are identified by a manual analysis of the results,

hereby outlined by selected examples. Specifically, four cases are identified ((a)

through (d)). Example instances for each case are referred to by an ID (e.g. a1, a2,

b1, etc.). For each instance we illustrate the true label, the wrong prediction made

by our system, and indicative segments found in the instance text.

• First, our system often labels instances with very similar / plausible alter-

native annotations to the ground truth, which could be however arguably

16 For a complete reference regarding the mapping of numeric indexes to class names, refer
to Table 14 in the appendix.
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regarded as semantically valid – even by human evaluators – given the in-

stance text. This case is presented in the table group (a) - Semantically sim-

ilar labels. In example a1, the label alt.atheism is applied instead of the true

label talk.religion.misc, on a 20-Newsgroups instance discussing theism and

the conversion of believers to/from atheism, while example a3 is misclassified

to comp.sys.mac.hardware rather than sci.electronics, with the discussion in

the text dealing with several computer parts.

• Similarly, our system deviates from the ground truth due to ambiguity and

multiple distinct thematic topics in the textual content of many instances.

These texts thus approach a multi-label nature with respect to the available

classes. This case is reflected in group (b) – Ambiguous / equivocal instances –

where we list discussions that involve multiple terms and keywords connected

to many classes. For example, b1 contains references to hardware but has a

ground truth generally related to the Windows operating system, while b2

mentions multiple graphics file formats but the true label is the X window

system. Instances b3 and b4 are mislabelled as sales-related posts from related

keywords and terms (e.g. “revenue”, “business”, “for sale”, etc.), instead of

classes linked to specific products and objects of discussion. Finally, text b5

features a lengthy discussion on US abortion legislation which was labelled as

a political posting by our system, rather than a religious one.

• Further, there are cases where the content of the text is critically linked to a

single or very few mentions of a named entity, that our model either disregards

or the available data is not sufficient to leverage (table section (c) - Critical

named entity). Such cases are illustrated with examples c1 and c2, where

knowledge that “Jack Morris” is a baseball player or that “VAX” is an IBM

machine would be required to reach the correct conclusions.

• Additionally, some errors can arise due to the disambiguation method failing

to produce to the correct sense, given the context. These cases are presented

in group (d) - Context miss. In instance d1, the system associates mentions

of battery features to description of product aspects and/or bad reviews,

predicting a sales-related text. In example d2, our model gives a very large

weight on “The Devil Reincarnate” user handle, deducing a religion class from

that very mention and undervaluing the other text terms. In d3, mentions of

“disk” are likely linked to the hard disk drive mechanical component, rather

than the software-centric sense in the context of operating systems, leading

to a corresponding misclassification.

Cases of classification error not included below may be harder to explain; potential

causes for them could involve data outliers, classifier bias due to sample / instance

size imbalances, etc.

Having performed an error analysis of our model, we assess the statistical signif-

icance of the performance improvements introduced by each semantic enrichment

configuration. To this end, we present in Table 4 the pairwise t-test results of the

experimental configurations presented above, with respect to the “embedding-only”

baseline method. We can see that all configurations achieve significantly different
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enrichment features disam accuracy ma-f1 dim

N/A majority-base N/A 0.005 0.053 N/A

N/A embedding-only N/A 0.724 0.716 50

concat freq basic 0.784 0.790 18,157

concat tfidf basic 0.752 0.760 18,157

replace freq basic 0.763 0.769 18,107

replace tfidf basic 0.643 0.648 18,107

concat freq pos 0.778 0.784 19,549

concat tfidf pos 0.755 0.762 19,549

replace freq pos 0.764 0.770 19,499

replace tfidf pos 0.648 0.652 19,499

concat freq basic+spread 0.775 0.782 22,116

concat tfidf basic+spread 0.755 0.762 22,116

replace freq basic+spread 0.761 0.768 22,066

replace tfidf basic+spread 0.652 0.656 22,066

concat freq pos+spread 0.778 0.784 23,546

concat tfidf pos+spread 0.762 0.755 23,546

replace freq pos+spread 0.768 0.762 23,496

replace tfidf pos+spread 0.766 0.760 23,496

concat tfidf context 0.714 0.722 803

concat freq context 0.719 0.725 803

replace tfidf context 0.563 0.569 753

replace freq context 0.673 0.679 753

Table 2. 20-Newsgroups main experimental results. Underlined values outperform

the “embedding-only” baseline method, while bold values indicate the best dataset–

wise performance. Values in italics represent a performance boost achieved by the

spreading activation in comparison to the identical configuration without it. “N/A”

stands for non-applicable.

results at a 5% confidence level, with most configurations also performing even

more consistently differently, at a 1% confidence level. Regarding the statistical

significance of hypernymy propagation, we assess it by comparing its presence and

absence, i.e., “X+spread” rows against “X” rows. Min / max p values ranged from

9.97e−06 to 7.50e−01 for the accuracy score and from 1.29e−05 to 9.78e−01 for

the macro F1-score (due to lack of space, we omit detailed results). There, sta-

tistical significance was achieved at the 5% confidence level for the majority of

configurations, with many configurations (including those composed of POS con-

cept selection, replace fusion and TF-IDF weights) surpassing the 1% confidence

level for accuracy.

Next, we examine the effect of dimensionality reduction on the performance of our
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id true / predicted label indicative text

(a) - Semantically similar labels

a1
talk.religion.misc / scriptures are the whole truth / convert
alt.atheism non-theism / religion is a nice fantasy

a2
talk.religion.christian / evangelical counter-cult organization /
talk.religion.misc World of Faith / historic Christian faith

a3
comp.sys.mac.hardware / Intel processor / HP-IB connector /
sci.electronics Mac board NATIONAL INSTRUMENTS

(b) - Ambiguous / equivocal instances

b1
comp.os.ms-windows.misc / McAFree anti-virus program /
comp.sys.ibm.pc.hardware scan entire hard disk / my friend’s machine

b2
comp.windows.x / converters for xpm
comp.graphics converting GIFs/JPEGs/PS / xpm format

b3
sci.electronics / lost revenue due to pirates /
misc.forsale business environment / purchase a few copies

b4
rec.autos / MR2 seats for sale /
misc.forsale gave the seller / ask questions when buying

b5
talk.religion.misc / Tieing Abortion to Health Reform / Clinton
talk.politics.misc tried to block funding / government to pay

(c) - Critical named entity

c1
rec.sport.baseball / this Jack Morris fella / season’s only
rec.autos just started / how Morris is doing

c2
comp.sys.ibm.pc.hardware / VAX/VMS VNEWS / PC Power
comp.sys.mac.hardware cooling fan / heat sink grease

(d) - Context miss

d1
sci.electronics / Lead Acid batteries / battery
misc.forsale goes dead / plates of the battery

d2
rec.autos / The Devil Reincarnate / commercial
talk.religion.misc cars today / VW Golf/Passat

d3
comp.os.ms-windows.misc / disk copy / PC has 4MB
comp.sys.ibm.pc.hardware RAM / allocate more memory

Table 3. Misclassification cases for the best-performing configuration over the

20-Newsgroups dataset, where (a) the predicted label is semantically similar to the

ground truth, (b) the test instance can be reasonably considered semantically am-

biguous, given the labelset, (c) the error is related to the existence of critical named

entities, or (d) the error is linked to context misidentification. True / predicted la-

bels refer to the instance ground truth and the erroneous prediction of our model for

that test instance, respectively. The listed slash-separated text segments from each

instance are indicative samples believed to have had a contribution to misclassifica-

tion.
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(a) Confusion matrix (b) Label-wise performance

Fig. 8. (a) The diagonal-omitted confusion matrix, and (b) the label-wise performance

chart for our best performing configuration over the 20-Newsgroups dataset.

semantic vectors. Table 5 reports the performance when discarding concepts with

a raw concept-wise frequency of at least 20 occurrences, while Table 6 corresponds

to keeping only the top-50 concepts, in terms of dataset-wise frequency, so as to

match the word embedding dimension. We apply both filtering techniques on all

configurations of our approach, except for hypernymy propagation and context

embedding, due to space limitations. We observe the following patterns:

• The frequency threshold of 20 reduces the dimensionality of the semantic

vectors by more than 50%, at a minor cost in classification accuracy. Still,

all configurations – excluding TF-IDF with word embedding replacement –

surpass the “embedding-only” baseline. In fact, the best configuration of the

main experiments (i.e., concatenation fusion with basic-selected raw frequen-

cies) maintains a performance very close to its original one.

• When keeping the 50 most-frequent concepts dataset-wise, only concatenation

fusion is comparable to the baseline scores. For these cases, TF-IDF weights

perform better than the raw concept frequencies, being very close to the

baseline results. However, no configuration surpasses the baseline scores.

4.2.2 Reuters

Table 8 reports the experimental results over the Reuters-21578 dataset, which give

rise to the following conclusions:

• We observe the same performance patterns as in the case of the 20-Newsgroups

dataset. The semantic augmentation outperforms the “embedding-only” base-

line, but not in all cases. The feature vectors are again high-dimensional,

although considerably shorter than the 20-Newsgroups dataset. This should

be attributed to the fewer training documents and the significantly shorter

documents (in terms of words) in the Reuters dataset.
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enrichment features disam accuracy ma-f1

concat freq basic 5.92e−06∗∗ 4.08e−06∗∗

concat tfidf basic 2.54e−05∗∗ 6.08e−06∗∗

replace freq basic 3.21e−04∗∗ 8.24e−05∗∗

replace tfidf basic 4.99e−07∗∗ 3.62e−07∗∗

concat freq pos 4.89e−05∗∗ 2.13e−05∗∗

concat tfidf pos 8.65e−06∗∗ 2.68e−06∗∗

replace freq pos 3.48e−04∗∗ 1.11e−04∗∗

replace tfidf pos 6.73e−06∗∗ 9.85e−06∗∗

concat freq basic+spread 3.23e−07∗∗ 7.51e−08∗∗

concat tfidf basic+spread 5.44e−05∗∗ 1.88e−05∗∗

replace freq basic+spread 7.21e−05∗∗ 1.85e−05∗∗

replace tfidf basic+spread 4.60e−06∗∗ 8.47e−06∗∗

concat freq pos+spread 1.73e−04∗∗ 8.66e−05∗∗

concat tfidf pos+spread 1.84e−05∗∗ 2.65e−06∗∗

replace freq pos+spread 4.40e−04∗∗ 7.65e−05∗∗

replace tfidf pos+spread 2.17e−04∗∗ 5.09e−05∗∗

concat tfidf context 2.51e−03∗∗ 1.72e−02∗

concat freq context 2.95e−02∗ 2.86e−03∗∗

replace tfidf context 3.52e−05∗∗ 8.85e−07∗∗

replace freq context 3.52e−05∗∗ 8.21e−05∗∗

Table 4. 20-Newsgroups main experimental pairwise t-test results, with respect to

the “embedding-only” baseline. Single and double-starred values represent statistical

significance at 5% and 1% confidence levels, respectively.

enrichment weights disam accuracy ma-f1 dim

N/A majority-base N/A 0.005 0.053 N/A

N/A embedding-only N/A 0.724 0.716 50

concat freq basic 0.779 0.786 7,092

concat tfidf basic 0.754 0.761 7,092

replace freq basic 0.764 0.771 7,042

replace tfidf basic 0.674 0.679 7,042

concat freq pos 0.777 0.784 7,323

concat tfidf pos 0.752 0.759 7,323

replace freq pos 0.763 0.770 7,273

replace tfidf pos 0.673 0.678 7,273

Table 5. Experiments over the 20-Newsgroups dataset for a concept-wise frequency

threshold of 20. Underlined values outperform the “embedding-only” baseline.
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enrichment weights disam accuracy ma-f1 dim

N/A majority-base N/A 0.005 0.053 N/A

N/A embedding-only N/A 0.724 0.716 50

concat freq basic 0.705 0.697 100

concat tfidf basic 0.723 0.715 100

replace freq basic 0.221 0.212 50

replace tfidf basic 0.128 0.081 50

concat freq pos 0.705 0.697 100

concat tfidf pos 0.722 0.714 100

replace freq pos 0.219 0.209 50

replace tfidf pos 0.126 0.079 50

Table 6. Experiments over the 20-Newsgroups dataset for a dataset-wise frequency

threshold of 50. No configuration outperforms the “embedding-only” baseline.

• The best performance is obtained when using raw frequency features, con-

catenated to the word embedding with part-of-speech selection, in combina-

tion with hypernymy propagation via spreading activation. This configuration

gives the best accuracy (0.749), closely followed by the same configuration

with basic selection. For the macro F1-score, replacing the word embedding

with frequency-based vectors, part-of-speech selection and hypernymy prop-

agation performs the best (0.378). In fact, the replace fusion strategy holds

the top 3 configurations with respect to macro F1-score.

• Regarding concept selection, the basic and the POS techniques result in very

similar performance. Context embedding selection exhibits poor accuracy,

performing under the “embedding-only” baseline, save for marginal improve-

ments in macro F1-score.

• Spreading activation performs the best here.

• Comparing the replacement fusion strategy with the concatenation one almost

always favors the latter, with considerable performance difference.

• The TF-IDF weights always perform under the raw concept frequencies, as

in the 20-Newsgroups case.

Similarly to the 20-Newsgroups dataset case, we move on to the error analysis,

with Figure 9(a) depicting the confusion matrix with the misclassified instances

(i.e. diagonal entries are omitted). For better visualization, it illustrates only the

26 classes with at least 20 samples, due to the large number of classes in the Reuters

dataset. We observe that the misclassification occurrences are more frequent, but

less intense than those in the 20-Newsgroup dataset. Noticeable peaks are in classes

crude, grain and money-fx. Additionally, Figure 9(b) depicts the label-wise perfor-

mance of our best configuration. We observe that it varies significantly, with classes
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like earn and acq achieving excellent performance, while others perform rather

poorly, e.g., soybean and rice.

Moving on to a manual inspection of misclassified instances from the Reuters

test set, Table 7 presents such examples, produced when using our best-performing

configuration. As in the previous section, we pair the listed examples with the true

and predicted labels, indicative terms in the text and possible explanations for the

erroneous result, given the instance content:

• Firstly, we observe that Reuters includes labels with considerable semantic

similarity to others, presented in the first table group ((a) - Semantically sim-

ilar labels). For example, the class coconut is close to coconut-oil, while labels

like grain, rye and wheat cover varying levels of specificity among types of

plant grains and crops. Instance a1 includes coconut production-related terms,

while a2 contains multiple mentions of wheat and its pricing and a3 details

production information of a variety of grain crops. Likewise, generic and spe-

cific classes for seed crops (e.g. oilseed, rapeseed) as well as vegetable seed oils

(i.e. rape-oil, veg-oil) can be considered as exhibiting semantic overlap. For

example, instance a5 is misclassified as such, with its text containing multiple

references to various kinds of vegetable oils. For these examples, mislabelling

is manifested from the generic ground truth to a deviation to a more specific

class, or vice-versa.
• Secondly, scenarios where polysemous instances are estimated to contribute to

misclassification are covered in the error category (b) - Ambiguous / equivocal

instances. There, we can find test documents with, e.g., the aluminum ground

truth class (alum) being mislabelled to gold and yen, with mentions to the

precious metal and the Japanese currency in instances b1 and b2 respectively

being a core, non-trivial theme in the text. Similarly, multiple themes can

be identified in examples b3 (cocoa and information detailing its national

production), b4 (the dollar and foreign monetary exchange, with multiple

terms pertaining to the latter) and b5 (shipping and transport of wheat).

Moving on to significance testing, we examine the performance difference between

each semantic augmentation configuration and the “embedding-only” baseline, re-

porting in Table 9 the corresponding pairwise t-test results. We observe that most

configurations achieve significantly different performance at a 5% confidence level,

while all hypernymy propagation runs perform even more consistently better, at

a 1% confidence level. Runs with context-embedding disambiguation and concat

fusion do not perform significantly different than the baseline at the examined con-

fidence levels. Regarding the significance of the hypernymy propagation runs with

respect to the semantic runs without it, the improvements introduced by all con-

figurations of the former are significant at a 1% confidence level: the p values range

from 3.64e−08 to 1.37e−06 for accuracy, and from 8.54e−08 to 2.57e−06 for macro

F1-score (we omit detailed results due to lack of space).

Finally, applying the dimensionality reduction methods to the semantic vectors

yields the results reported in Tables 10 and 11, which can be summarized as follows:

• The trade-off introduced by the concept-wise frequency threshold of 20 is
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id true / predicted label indicative text

(a) - Semantically similar labels

a1
coconut-oil / Philippine Coconut Authority / five-year coconut
coconut production cycle / coconut product export

a2
grain / tonnes of soft wheat / USDA approval for
wheat wheat price / Continental Grain Co

a3
rye / Danish crops two weeks behind / barley [...]
grain rapeseed / winter wheat, [...] winter rye

a4
oilseed / 4,000 tonnes canadian rapeseed / Canadian
rapeseed rapeseed overnight / at an undisclosed price

a5
rape-oil / rise in edible oil demand / soybean oil [...]
veg-oil rapeseed oil / other origin oils

(b) - Ambiguous / equivocal instances

b1
alum / gold, silver, copper and aluminum / Gold futures
gold which previously had a limit of / the metals market

b2
alum / swapping 32 billion yen / capitalisation to
yen 147 billion yen / Japanese shareholders

b3
cocoa / German grindings expected to [...] / Grindings rose to
gnp 55,190 tonnes / compared to [...] European countries

b4
dlr / dilemma over monetary policy / further appreciation
money-fx of the mark / a weaker dollar would be risky

b5
ship / ship prepares to load wheat / urgently needed wheat
grain for Fiji / Australian Wheat Board spokesman

Table 7. Misclassification cases for the best-performing configuration over the

Reuters dataset, where (a) the predicted label is semantically similar to the ground

truth, or (b) the test instance can be reasonably considered semantically ambiguous,

given the labelset. True / predicted labels refer to the instance ground truth and

the erroneous prediction of our model for that test instance, respectively. The listed

slash-separated text segments from each instance are indicative samples believed to

have had a contribution to misclassification.

similar to the 20-Newsgroups case: the dimensionality of the semantic vectors

is radically reduced, at a negligible cost in classification performance.

• The combination of TF-IDF weights with the replace fusion strategy exhibits

the worst performance, underperforming the “embedding-only” baseline, con-

trary to the rest of the configurations.

• The 50 most-frequent concepts filtering reduces performance even further,

with no configuration surpassing the “embedding-only” baseline. Similar to

the 20-Newsgroups case, the combination of the concatenation fusion strategy
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enrichment weights disam accuracy ma-f1 dim

N/A majority-base N/A 0.2903 0.005 N/A

N/A embedding-only N/A 0.725 0.295 50

concat freq basic 0.747 0.359 8,534

concat tfidf basic 0.723 0.320 8,534

replace freq basic 0.744 0.362 8,484

replace tfidf basic 0.628 0.222 8,484

concat freq pos 0.746 0.349 9,135

concat tfidf pos 0.723 0.318 9,135

replace freq pos 0.744 0.372 9,085

replace tfidf pos 0.627 0.230 9,085

concat freq basic+spread 0.748 0.364 11,358

concat tfidf basic+spread 0.720 0.322 11,358

replace freq basic+spread 0.745 0.376 11,308

replace tfidf basic+spread 0.643 0.232 11,308

concat freq pos+spread 0.749 0.365 11,966

concat tfidf pos+spread 0.720 0.318 11,966

replace freq pos+spread 0.746 0.378 11,916

replace tfidf pos+spread 0.644 0.243 11,916

concat tfidf context 0.726 0.301 803

concat freq context 0.724 0.291 803

replace tfidf context 0.621 0.147 753

replace freq context 0.706 0.277 753

Table 8. Reuters main experimental results. Underlined values outperform the “em-

bedding-only” baseline, while bold values indicate the best dataset-wise performance.

Values in italics denote a performance boost by the spreading activation, with respect

to the identical configuration without it.

with the TF-IDF weights performs the best, matching the macro F1-score of

the baseline run.

4.3 Discussion

We now interpret the experimental findings in relation to the research questions

posed in Section 1 and compare our approach with the state-of-the-art in the field.

4.3.1 Addressing the research questions

In light of the experimental results, we revisit the research questions stated in the

introduction of the paper.



30 N. Pittaras et al.

(a) Confusion matrix (b) Label-wise performance

Fig. 9. (a) The diagonal-omitted confusion matrix, and (b) the label-wise performance

chart for our best performing configuration over the Reuters dataset. For better visualiza-

tion, only the 26 classes with at least 20 samples are illustrated.

enrichment weights disam accuracy ma-f1

concat freq basic 1.80e−04∗∗ 1.91e−04∗∗

concat tfidf basic 1.29e−01 4.33e−03∗∗

replace freq basic 1.04e−04∗∗ 2.00e−04∗∗

replace tfidf basic 1.32e−06∗∗ 7.21e−05∗∗

concat freq pos 3.11e−05∗∗ 2.40e−03∗∗

concat tfidf pos 3.72e−01 1.09e−02∗

replace freq pos 2.06e−05∗∗ 1.17e−04∗∗

replace tfidf pos 2.93e−07∗∗ 8.84e−04∗∗

concat freq basic+spread 2.30e−06∗∗ 6.25e−10∗∗

concat tfidf basic+spread 3.52e−07∗∗ 5.78e−10∗∗

replace freq basic+spread 4.41e−07∗∗ 5.10e−10∗∗

replace tfidf basic+spread 6.94e−08∗∗ 1.03e−09∗∗

concat freq pos+spread 1.94e−07∗∗ 1.83e−11∗∗

concat tfidf pos+spread 4.29e−07∗∗ 4.21e−10∗∗

replace freq pos+spread 1.00e−06∗∗ 2.66e−11∗∗

replace tfidf pos+spread 1.61e−07∗∗ 9.09e−10∗∗

concat tfidf context 4.16e−01 2.74e−01

concat freq context 2.56e−01 5.03e−01

replace tfidf context 1.99e−07∗∗ 2.51e−07∗∗

replace freq context 3.49e−05∗∗ 3.00e−03∗∗

Table 9. Reuters main experimental pairwise t-test results, with respect to the “em-

bedding-only” baseline. Single and double-starred values represent statistical signif-

icance at 5% and 1% confidence levels, respectively.
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enrichment weights disam accuracy ma-f1 dim

N/A majority-base N/A 0.2903 0.005 N/A

N/A embedding-only N/A 0.725 0.295 50

concat freq basic 0.747 0.358 3,286

concat tfidf basic 0.726 0.309 3,286

replace freq basic 0.745 0.356 3,236

replace tfidf basic 0.651 0.231 3,236

concat freq pos 0.748 0.363 3,308

concat tfidf pos 0.726 0.319 3,308

replace freq pos 0.745 0.362 3,258

replace tfidf pos 0.653 0.241 3,258

Table 10. Experiments over the Reuters dataset for a concept-wise frequency

threshold of 20. Underlined values outperform the “embedding-only” baseline.

enrichment weights disam accuracy ma-f1 dim

N/A majority-base N/A 0.2903 0.005 N/A

N/A embedding-only N/A 0.725 0.295 50

concat freq basic 0.718 0.277 100

concat tfidf basic 0.724 0.293 100

replace freq basic 0.635 0.155 50

replace tfidf basic 0.577 0.045 50

concat freq pos 0.717 0.275 100

concat tfidf pos 0.725 0.290 100

replace freq pos 0.637 0.154 50

replace tfidf pos 0.581 0.048 50

Table 11. Experiments over the Reuters dataset for a dataset-wise frequency

threshold of 50. No configurations outperforms the “embedding-only” baseline.

1. Can semantic information increase the task performance, when ap-

plied in this setting? If so, how much? Experimental results show that

a considerable performance boost is achieved by injecting semantic informa-

tion in the network input, with the improvement achieving significance at

a 5% confidence level. Our semantic augmentation approach, which inserts

WordNet concept statistics into the network input, achieves the best average

performance when using raw concept frequencies, selecting the first retrieved
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concept per word (basic strategy) and concatenating the resulting vector to

the word2vec embedding.

2. Do different semantic disambiguation methods affect the above per-

formance increase and how? Out of the three examined methods (i.e., ba-

sic, POS and context-embedding), the first one seems to suffice, the second one

appears to have a non-noteworthy effect on the final performance, while the

third one performs under the other two across all datasets. We note however,

that the performance of context-embedding disambiguation depends heavily

on the availability of concept-wise context in the semantic resource. Given

that WordNet has limited examples per concept (e.g., 70% of the concepts

convey a single example sentence), more credible findings should be derived

from a wider investigation that includes semantic resources with a richer lex-

ical content. Alternatively, we could relax the context acquisition constraint,

i.e., the minimum word count threshold in Section 3.2.2.

3. What is the effect of enriching the representation with the n-th or-

der hypernymy relations (e.g., through a spreading activation pro-

cess)? Initial findings indicate that this effect varies across datasets. For

20-Newsgroups, the hypernymy propagation introduces minor and inconsis-

tent (but statistically significant, at a 5% level) performance boosts, when

compared to not using the propagation mechanism. For Reuters, though, the

hypernymy propagation gives the best results among the examined config-

urations, with even greater statistical significance (beyond a 1% confidence

level). This discrepancy is probably related to the size of each dataset and to

the number of concepts that are extracted from WordNet (the average num-

ber of words per document in 20-Newsgroups is double than that in Reuters).

Spreading activation apparently does little performance-wise for semantic vec-

tors that are over-saturated, due to the large number of activations that are

triggered by the plethora of document words. In fact, spreading activation can

be detrimental to performance, if it introduces additional noise by populating

the concept histogram with many generic concepts. As a result, further in-

vestigation is required in order to draw more solid conclusions regarding the

application of this step. Ideally, that investigation should include semantic

filtering steps that are applied after hypernymy propagation.

Next, we summarize the main findings obtained from our experimental analysis:

• Semantic vector dimensionality: The semantic vectors of our approach

are high-dimensional, a common byproduct of frequency-based features. For

20-Newsgroups, applying dimensionality reduction with a static concept-wise

frequency threshold set to 20, allows for restricting the vector length by 61%,

while retaining 99.36% of the top accuracy score (Table 5). For Reuters, the

optimal performance (excluding the hypernymy propagation ) stays the same

at a 61.5% size reduction (Table 10). On the other hand, dimensionality re-

duction with the 50 most frequent concepts is evidently too extreme, and the

resulting fixed-length vectors cannot be used as substitutes to equal-length

word embeddings. This is in line with the next observation, which states that
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replacing the embedding vector entirely, rather than augmenting it, consis-

tently deteriorates the classification performance, at least for the datasets and

semantic resources we consider. Notably, in this dimensionality reduction sce-

nario – and contrary to the results of both the main and concept-wise thresh-

olded experiments – TF-IDF weights outperform the raw frequency vectors.

This probably suggests that TF-IDF is important for semantic frequency-

based features, but only at very extreme dimensionality reductions. These

findings show that the semantic vector-space features like the ones employed

by our approach can be rather noisy, despite representing high-level informa-

tion. Even though frequency-based concept-wise thresholding works well in

our evaluation, both truncation schemes warrant further investigation (e.g.,

in the context of hypernymy activation propagation and context embedding

configurations). It is also interesting to explore the effect of more sophisti-

cated methods for dimensionality reduction on the enriched data produced

by our pipeline.

• Replacement versus concatenation: The experimental results over both

datasets indicate a considerable performance difference between replacing the

word embedding with the semantic vector and concatenating the two. The lat-

ter consistently outperforms the former, demonstrating that WordNet-based

concept information is less important than the distributional and statistical

properties that are captured by the word embeddings. This finding carries

over to macro-averaged F1-score results for the 20-Newsgroups dataset, but

does not apply to the Reuters dataset, where replacing the word embedding

yields the best macro-averaged score. This is an interesting divergence from

the behaviour in 20-Newsgroups that is possibly explained by the very large

class imbalance of Reuters. This means that the semantic concept-based fea-

tures probably provide useful information for under-represented cases that are

inadequately covered by the embedding training. In other words, the concept-

based information, which can be readily extracted from a semantic resource, is

more suitable for representing minorities (i.e., under-sampled classes), coun-

terbalancing the lack of a critical mass of data that is required by embeddings.

This hypothesis is reinforced by the comparison of our approach with vectors

pre-trained on very large corpora, as discussed below (Section 4.3).

• Using raw concept frequencies versus TF-IDF scores: The experimen-

tal results over the 20-Newsgroups dataset contradict previous knowledge

about the relationship of token-based weighting schemes, when applied on

lexical terms (e.g. words / sentences / documents). There, discounting com-

mon terms consistently boosts the performance on the task at hand. Yet, the

inverse relationship manifests itself in the world of concepts, with TF-IDF

weights always underperforming the raw frequency vectors in terms of accu-

racy. It would be interesting to examine information gain measures on such

concept-based features as an alternative method towards identifying the most

suitable concepts for augmenting classification performance.
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4.3.2 Comparison to the state-of-the-art

We now compare our approach against the state-of-the-art in the field, including

both fitted and pre-trained embedding approaches; in all cases, the resulting vectors

are used in the classification pipeline in the same way as all other configurations

examined and described in this work. Table 12 reports the performance of the ma-

jority classifier, the “embedding-only” baseline method which uses only the fitted

word2vec embedding, (i) the FastText (Joulin et al., 2017) embeddings, which are

fitted to each dataset (ii) the publicly available pre-trained versions of word2vec,

FastText and GloVe (Pennington et al., 2014) embeddings, with a dimensionality

of 300, 50 and 50, respectively; (iii) the 50-dimensional single-sense vectors used

in (Huang et al., 2012) for multi-sense vector generation; (iv) the main sense em-

bedding approaches, i.e., the cluster-based, multi-sense 50-dimensional word vectors

from (Huang et al., 2012), the 400-dimensional SensEmbed vectors (Iacobacci et al.,

2015) and supersense embeddings (Flekova and Gurevych, 2016). For (iv), we use

the publicly available pre-trained vectors of each method, while for (i), (ii) and (iii)

we also apply retrofitting (Faruqui et al., 2015) using the same WordNet relations as

in our semantic augmentation process. This process runs as a post-processing step

for 10 iterations - we experimented with more iterations (up to 50), but observed

no improvement.

We can see that our approach outperforms all other state-of-the-art word em-

beddings – not only the FastText and word2vec vectors that are fitted on the

same dataset as our approach, but also the pre-trained versions of FastText, GloVe

and word2vec embeddings, which have been trained on a far larger corpora. Only

the 300-dimensional pre-trained word2vec surpasses the ”embedding-only” baseline.

Surprisingly enough, retrofitting the embeddings consistently results in inferior per-

formance, both for the pre-trained ones and for those fitted from scratch. Regarding

sense embeddings, both supersenses and SensEmbed vectors work well, surpassing

the ”embedding-only” baseline, but they do not outperform our approach. The

multi-context cluster-based approach underperforms all other configurations.

Further, we include an additional evaluation on two more datasets.

1. The BBC corpus (Greene and Cunningham, 2006) contains articles from the

news domain, annotating them with 5 categories (business, politics, enter-

tainment, tech and sports). It consists of 2,225 samples and is evaluated via

10-fold cross validation. Mean document size is approximately 220.1 words.

2. The Ohsumed dataset (Lang, 1995) contains medical texts, specifically 10,433

train and 12,733 test samples, with an approximate mean document size of

108.1 words.

These corpora extend our evaluation to datasets with few classes and small number

of samples (as is the case with BBC) and to datasets from a radically different

domain (i.e., the medical content of Ohsumed). Table 13 presents the experimental

results over the additional datasets for the two main baselines, our best performing

configuration as well as top performers from Table 12.

We observe that our approach performs the best for both the additional datasets,
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config Reuters 20-Newsgroups

system accuracy ma-f1 accuracy ma-f1

majority baseline 0.290 0.005 0.005 0.053

embedding-only 0.725 0.295 0.724 0.716

our approach 0.749 0.378 0.784 0.790

other trained embeddings

FastText (Joulin et al., 2017) 0.732 0.319 0.751 0.743

FastText + retrofitting 0.717 0.260 0.748 0.740

word2vec + retrofitting 0.709 0.248 0.717 0.710

pre-trained embeddings

glove (Pennington et al., 2014) 0.702 0.275 0.620 0.610

glove + retrofitting 0.684 0.235 0.587 0.575

FastText 0.733 0.310 0.734 0.727

FastText + retrofitting 0.705 0.239 0.706 0.695

word2vec (300-dim) 0.737 0.311 0.721 0.712

word2vec (300-dim) + retrofitting 0.689 0.239 0.476 0.465

single-context (Huang et al., 2012) 0.661 0.227 0.541 0.531

single-context + retrofitting 0.629 0.175 0.464 0.454

pre-trained sense embeddings

multi-context (Huang et al., 2012) 0.570 0.121 0.430 0.412

SensEmbed (Iacobacci et al., 2015) 0.728 0.308 0.722 0.714

Supersenses (Flekova and Gurevych, 2016) 0.729 0.313 0.733 0.725

Table 12. Dataset-wise comparison with the state-of-the-art in terms of accuracy

and macro-F1 score. Underlined values outperform the “embedding-only” (50-di-

mensional fitted word2vec) baseline, while bold values denote column-wise maxima.

with the difference being less noticeable on the BBC dataset. The lexical-only

word2vec pre-trained embeddings outperform both sense-based approaches, out of

which SensEmbed achieves the highest accuracy. Retrofitting word2vec vectors im-

proves the classification results to a minor extent over the Ohsumed dataset.

Regarding experimental results that are reported in relevant studies in the liter-

ature, a WordNet-based enrichment approach in (Elberrichi et al., 2008) achieves

macro F1-scores of 0.719 and 0.717 for Reuters and 20-Newsgroups, respectively.

However, it considers only the 10 most populous classes of the Reuters dataset,

unlike our evaluation, which uses all available classes (despite the respective class
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bbc ohsumed

system accuracy ma-f1 accuracy ma-f1

majority 0.230 0.075 0.172 0.013

embedding-only 0.970 0.970 0.384 0.300

ours 0.976 0.976 0.435 0.373

other pre-trained embeddings

word2vec 0.973 0.973 0.307 0.244

word2vec + retrofitting 0.880 0.878 0.313 0.250

SensEmbed 0.969 0.969 0.328 0.215

Supersenses 0.852 0.851 0.229 0.148

Table 13. Evaluation of representative configurations on additional datasets.

Underlined values outperform the “embedding-only” baseline, while bold values de-

note column-wise maxima.

imbalance and folksonomy-based noise explained in Section 4.1). In (Nezreg et al.,

2014), the authors apply a frequency-based semantic enrichment approach to heav-

ily reduced training and test portions of the Reuters and 20-Newsgroups datasets,

achieving 0.744 and 0.557 precision, respectively (they do not specify the aggrega-

tion type). The corresponding scores for our best approach for the Reuters dataset

is 0.748 / 0.42 micro and macro average respectively, and a 0.8 micro-macro preci-

sion value for 20-Newsgroups. In (Card et al., 2018), the authors examine generative

DNN topic models that are able to capture and model semantic information in the

form of document meta-data. Applying their approach to document classification,

they achieve an optimal accuracy of 0.71 over 20-Newsgroups, which is considerably

lower than our top performance (0.79). In (Pilehvar et al., 2017), the authors employ

a combination of CNN and LSTM networks with a semantic augmentation process

via sense and supersense embeddings extracted from WordNet or Wikipedia via Ba-

belNet. Their best configuration (using WordNet supersense trained embeddings)

achieves an F1-score of 0.858 on a subset of 6 classes from 20-Newsgroups, 0.22 on

Ohsumed and 0.934 on the BBC dataset; our corresponding scores are 0.790 (on the

entire 20-Newsgroups labelset of 20 classes), 0.373 and 0.976. To our knowledge, our

approach is directly outperformed only by (Jiang et al., 2018), where the authors

use a DBN architecture with softmax classification, achieving an accuracy of 0.8688

and 0.8263 over Reuters and 20-Newsgroups, respectively. Their method does not

use semantic information, but employs a larger and deeper neural model than ours

together with embedding fine-tuning. We also note that they use a heavily reduced

version of the Reuters dataset that consists of just 10 classes.
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6 Conclusion

In this paper, we examined semantic augmentation methods for text classification.

To boost classification performance, we extract frequency-based semantic informa-

tion from the WordNet semantic graph and fuse it with deep neural embeddings.

A large experimental evaluation demonstrates the following findings:

1. The use of semantic information from resources such as WordNet significantly

improves classification performance, when applied to the input space of the

neural model. This straightforward approach outperforms more complex ones

in the literature that use the semantic graph to augment the training of

embeddings, or to post-process the embedding vectors via retrofitting.

2. Concatenating the embedding and semantic vectors works best, on average,

with maximal gains coming at the cost of an increased dimensionality. This

increases the computational complexity of learning the classification model.

However, this can be radically alleviated by filtering the component concepts.

This is best realized by a threshold on minimum concept frequency.

3. Using raw, unnormalized concept frequency scores works best, while the basic

disambiguation strategy is sufficient to achieve the best performance (with

POS performing comparably). This seems to further simplify the semantic

augmentation process, but a deeper investigation is required on additional

and diverse datasets.

4. Hypernymy n-th order propagation via a spreading activation mechanism re-

inforces the already superior semantic augmentation process to a statistically

significant extent.

In the future, we plan to further investigate issues raised from the findings of our

experimental analysis, such as the behavior of TF-IDF weighting in frequency-based

semantic vectors. We also intend to examine efficient dimensionality reduction ap-

proaches for this kind of vector space data, ranging from pooling aggregations (e.g.

averaging, multiplication, etc.) to transformation methods such as PCA (Jolliffe,

2011), LDA (Fukunaga, 2013) or a neural embedding process, similar to other works

(Li et al., 2017). We will also test the context-embedding approach on additional se-

mantic resources, especially ones that provide a larger supply of example sentences

per concept. Finally, we will explore semantically-augmented classification in con-

junction with sequence-based neural classifiers, such as Long Short-Term Memory

(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (Chung et al., 2014)

models, as well in cases where embeddings of a larger dimensionality are employed.
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A Dataset label names

In Table 14, we list the mapping between label index and label name, for each

dataset examined in the main experimental evaluation.

20-Newgroups

index name index name index name

0 alt.atheism 7 rec.autos 14 sci.space
1 comp.graphics 8 rec.motorcycles 15 soc.religion.christian
2 comp.os.ms-windows.misc 9 rec.sport.baseball 16 talk.politics.guns
3 comp.sys.ibm.pc.hardware 10 rec.sport.hockey 17 talk.politics.mideast
4 comp.sys.mac.hardware 11 sci.crypt 18 talk.politics.misc
5 comp.windows.x 12 sci.electronics 19 talk.religion.misc
6 misc.forsale 13 sci.med

Reuters

index name index name index name

0 acq 30 hog 60 platinum
1 alum 31 housing 61 potato
2 barley 32 income 62 propane
3 bop 33 instal-debt 63 rand
4 carcass 34 interest 64 rape-oil
5 castor-oil 35 ipi 65 rapeseed
6 cocoa 36 iron-steel 66 reserves
7 coconut 37 jet 67 retail
8 coconut-oil 38 jobs 68 rice
9 coffee 39 l-cattle 69 rubber
10 copper 40 lead 70 rye
11 copra-cake 41 lei 71 ship
12 corn 42 lin-oil 72 silver
13 cotton 43 livestock 73 sorghum
14 cotton-oil 44 lumber 74 soy-meal
15 cpi 45 meal-feed 75 soy-oil
16 cpu 46 money-fx 76 soybean
17 crude 47 money-supply 77 strategic-metal
18 dfl 48 naphtha 78 sugar
19 dlr 49 nat-gas 79 sun-meal
20 dmk 50 nickel 80 sun-oil
21 earn 51 nkr 81 sunseed
22 fuel 52 nzdlr 82 tea
23 gas 53 oat 83 tin
24 gnp 54 oilseed 84 trade
25 gold 55 orange 85 veg-oil
26 grain 56 palladium 86 wheat
27 groundnut 57 palm-oil 87 wpi
28 groundnut-oil 58 palmkernel 88 yen

Table 14. Label indexes to names mapping, for the per-label performance graphs

for the 20-Newsgroups and Reuters datasets.


