Beyond Deep Learning: Enriching Data Representations for Machine Learning Tasks

Nikiforos Pittaras

Ph.D. Defense

Department of Informatics & Telecommunications National and Kapodistrian University of Athens

Institute of Informatics & Telecommunications NCSR "Demokritos"

npittaras@di.uoa.gr

August 31, 2021

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Acknowledgements

• Ph.D. proposal awared by a Industrial Ph.D. Scholarship Program of the Stavros Niarchos Foundation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Industrial application component

Introduction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Background				
	000000000	000000000000000000000000000000000000000	00000000	00000000000
Introduction	Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion

Focus: Machine learning (ML) systems

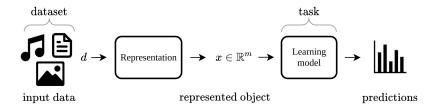
IVIULIVALIULI

- Applications crucial for social / scientific / commercial ecosystems
- E.g. classification, clustering, summarization solutions
- Improving such systems can yield significant benefits

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Background

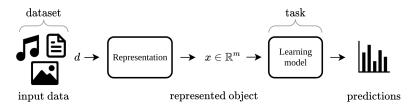
Typical Machine Learning Pipeline



- Dataset: real-world objects / ground truth d
- Representation: Maps *d* to a vector format
- Represented objects: Vector format *x*
- Learning model: finds associations / patterns in x
- Predictions: useful information produced by learning model

Background

Improving ML pipeline performance



▲□▶▲□▶▲□▶▲□▶ □ のQで

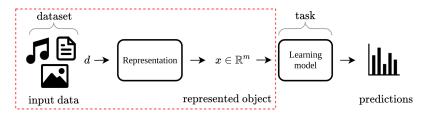
Indicative avenues for ML system improvement

- Resource-oriented:
 - More compute (GPUs / training times)
 - Greater quantity / quality of training data
- Modelling-oriented:
 - Improve the representation approach
 - Improve the learning model

IntroductionContent-based MethodsRepresentation Enrichment ApproachesIndustrial ApplicationConclusion00

Background

Improving ML pipeline performance



▲□▶▲□▶▲□▶▲□▶ □ のQで

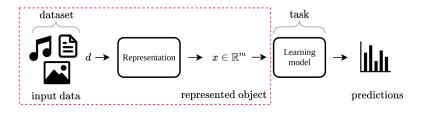
Indicative avenues for ML system improvement

- Resource-oriented:
 - More compute (GPUs / training times)
 - Greater quantity / quality of training data
- Modelling-oriented:
 - Improved representation approach
 - Improve the learning model

IntroductionContent-based MethodsRepresentation Enrichment ApproachesIndustrial ApplicationConclusion000

Thesis Focus

Importance of Representations



- Early step in the pipeline, benefits / errors propagate
- x : abstraction of d: May discard noise / lose information
- Important semantics/context may/may not be included in *x*
- Only input to Learning model: *x*
- Thus, *semantic gap* between *x* and *d* impacts performance

Introduction	Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion
00000000				
Thesis Focus				

Representation Enrichment

How can we narrow / bridge the semantic gap?

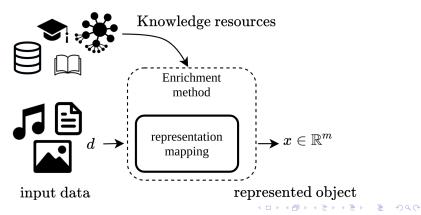
- Utilize resources of curated, high-level, structured knowledge (e.g. ontologies, lexicons, knowledge bases, class hierarchies)
- Go beyond content-based representations via enrichment

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Representation Enrichment

How can we narrow / bridge the semantic gap?

- Utilize resources of curated, high-level, structured knowledge (e.g. ontologies, lexicons, knowledge bases, class hierarchies)
- Go beyond content-based representations via enrichment



	Content-based Methods 000000000	Representation Enrichment Approaches	Industrial Application	Conclusion 00000000000
Thesis Focus				
Goals				

Holistic study of representations for ML problems, including:

- Content-based representation approaches
- Methods for knowledge-based representation enrichment
- Available structured human knowledge resources

Broad investigation:

• Different ML tasks (classification, clustering, summarization)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Different data modalities (text, images, audio)

Introduction Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion 00000000000
Thesis Focus			
Contributions			

Content-based Representations:

- Literature review [11]
- Novel proposals / applications [2][3][4][5][12][13]

Representation Enrichment:

- Overview of different exploitable knowledge resources [11]
- Literature review for representation enrichment methods [11]
- Novel proposals for enriching different ML tasks [1][10][11]
- Consolidation of findings to an industrial ML application [16]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Content-based Methods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Literature Overview

Focus of the Study

Study scope ¹:

- Content-based: consider only intra-instance content
- No additional/external information sources
- Focus on the context of classification
- Text, image, audio data modalities

Contributions: identified three broad paradigms

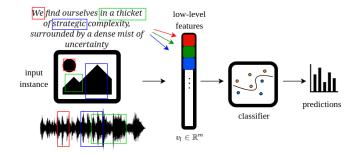
- 1. Low-level / template-matching representations
- 2. Aggregation-based representations
- 3. Deep representation learning approaches

¹Pittaras et al., Content-based and knowledge-enriched representations for classification across modalities: a survey, ACM CSUR (under review)

Literature Overview

Low-level / Template-Matching

- Locally / globally apply preconfigured templates
- Template output responses used as features
- E.g. Bag of Words / Features, simple input statistics, visual / audio descriptors

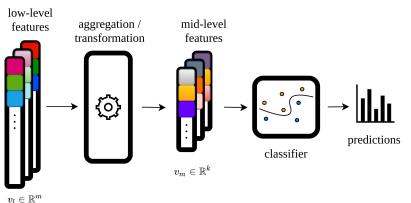


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion
00000000 0000000000			
Literature Overview			

Aggregation-based

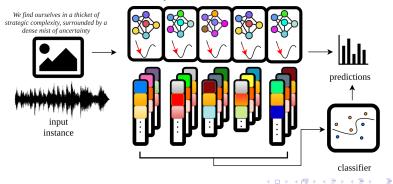
- Utilize ensembles of low-level representation instances
- Improve by applying pre-defined, engineered processing steps
- Transform / combine into (reduced) distributed latent space
- E.g. Clustering, factorization/decomposition, topic modelling



Literature Overview

Deep representation learning

- Non-linear hierarchies (simple to rich), distributed features
- End-to-end task & representation learning
- High pretraining & transfer-learning capabilities
- E.g. Feedforward, convolutional, recurrent NNs



representation learner / classifier

Literature Overview

Per-paradigm Pros/Cons

Generally observed:

paradigm / attributes	low-level	aggregation	deep
high-level semantics	X	?	\checkmark
explainable	\checkmark	?	Х
data-driven / learned	Х	?	\checkmark
low-dimensional / space-efficient	?	\checkmark	\checkmark
data efficient / lean	\checkmark	\checkmark	Х
computationally efficient	?	Х	Х

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

	Representation Enrichment Approaches	Industrial Application	Conclusion 00000000000
Literature Overview			0000000000
Findings			

- Multiple representation paradigms
- Strength and weaknesses for each; no one-size-fits-all
- Paradigm evolution: low \rightarrow aggregation-based \rightarrow deep
- Evolution reflects search for rich, informative features

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Per-application Studies and Novel Proposals

Overview

Motivation:

- Improve understanding accross different applications
- Identify task / domain-specific challenges / points of improvement

Broad investigation:

- Across tasks (classification, summarization, clustering)
- In conjunction with different, diverse learning models

• Across different domains / modalities

Per-application Studies and Novel Proposals

Focused studies

- Hate Speech Detection [3]
 - Text, Classification, Deep Word Embeddings, NGGs
- Extractive Summarization of Web Documents [2]
 - Text, Summarization, Topic-based features
- Automatic Summarization of Video Game Reviews [5]
 - Text, Summarization, Novel domain, Deep Embeddings
- Documents / Social Media Analysis in the Security Domain [4]
 - Text, Clustering, Classification, Summarization, NGGs
- Scaling and Enrichment of Automatic Summarization [13]
 - Text, Summarization, Performance Scaling, Utilization of NER information
- Classifying Videos with Multimodal DNNs [12]
 - Video (Image, Audio), Classification, Deep Features

0000000000000000

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Summary

Summary of Content-based Representations

- Multiple, diverse approaches; no one-size-fits-all method
- Indications for no-free-lunch theorem for representations
- Trend towards semantically rich representations
- Richness beneficial to multiple tasks, domains and modalities
- $\rightarrow\,$ Strengthen motivation to examine representation enrichment

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Representation Enrichment Approaches

Introduction Content-based Methods Representation Enrichment Approaches

▲□▶▲□▶▲□▶▲□▶ □ のQで

Motivation

Representation Enrichment

Thesis focus:

 Representation enrichment with human knowledge can improve task performance

Enriching with human knowledge may address:

- Missing contextual information
- Missing domain-specific knowledge
- Ambiguity in the data and their generation process
- Need for transparency & explainability

Introduction Content-based Methods Representation Enrichment Approaches

Literature Overview

Focus of the Study

Study ¹ scope:

- Enrichment: look beyond instance content
- Mine resources of structured knowledge
- Focus on the context of classification
- Text, image, audio data modalities

Contributions:

- Summary of structured knowledge resources
- Identified three enrichment paradigms

Literature Overview

Knowledge Resources

Sources of exploitable structured human knowledge:

- Semantic Graphs (Wordnet, Framenet, ConceptNet)
- Property-value stores (DBpedia, Wikidata)
- Lexicons (E-ANEW, GeneralInquirer)
- Hierarchical labelsets / ontologies (Imagenet, Audioset)

How do we use knowledge resource?

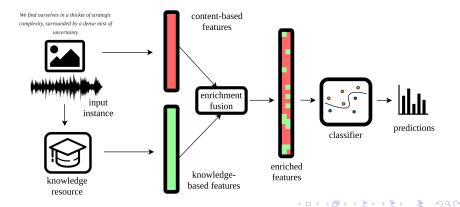
- Retrieve relevant knowledge per instance
- Integrate knowledge based on enrichment method

Introduction Content-based Methods Representation Enrichment Approaches 0000000 000000000

Literature Overview

Input enrichment / modification

- Augment feature set from content-based methods
- Inject knowledge-based features in the representation
- Result: discrete, joint content + knowledge-based feature space



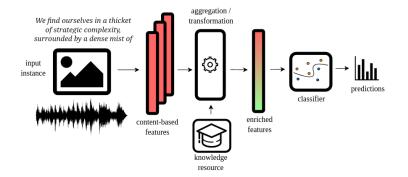
Introduction Content-based Methods Representation Enrichment Approaches 0000000 000000000

▲□▶▲□▶▲□▶▲□▶ □ のQで

Literature Overview

Knowledge-based refinement

- Transform / combine / aggregate content-based features
- Refinement guided / oriented / informed via knowledge
- Distributed enriched features ٢

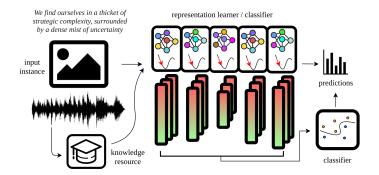


Introduction Content-based Methods Representation Enrichment Approaches 0000000 000000000

Literature Overview

Knowledge-aware deep systems

- Hierarchical, deep task / representation end-to-end learners
- Ingest content-based and knowledge-based information
- Enrichment process learned jointly with the representation



Introduction	Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion
		000000000000000000000000000000000000000		

Literature Overview

Findings

Multiple, diverse enrichment avenues in the literature:

- Correspondence to content-based paradigms
- Similar strengths and weaknesses apply
 - Low-level/template-matching \rightarrow input modification/enrichment

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Aggregation-based \rightarrow knowledge-based refinement
- Deep rep. learners \rightarrow end-to-end knowledge-aware systems
- $\rightarrow\,$ Can we select and utilize the best elements per paradigm?

 Introduction
 Content-based Methods
 Representation Enrichment Approaches
 Industrial Application
 Conclusion

 00000000
 00000000
 00000000
 00000000
 00000000
 00000000

Literature Overview

Proposed Approach

Proposed approach:

• Explore promising combination not explored in the literature:

- 1. Enrichment of deep content-based features
- 2. Use the input modification enrichment

Combine strengths:

- Rich, expressive content-based features
- Intuitive, explainable enriched representation

Overview

Proposed enrichment approach ¹:

- Word embedding features
- Disambiguated word senses from semantic graph
- Input enrichment / modification
- Exploit knowledge resource structure via spreading activation
- Deep Neural Network classifier

Proposed Enrichment for Text Classification

Contributions

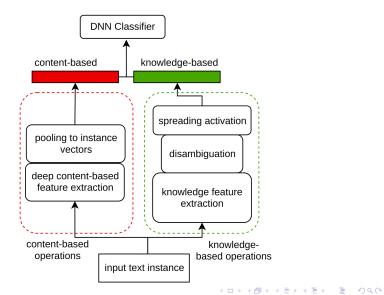
- Implementation of knowledge-enriched classification system
- Large-scale, cross-domain, comparative empirical evaluation
- Verification of performance benefits of proposed enrichment

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Statistically significant results
- State of the art results
- Identification of future directions for improvement

Proposed Enrichment for Text Classification

Overview



Proposed Enrichment for Text Classification

Content-based features

Content-based component:

- Neural word embeddings
- CBOW model (Word2Vec, (Mikolov, 2013a))
- 50-epoch training, 10-word window
- Average word vectors to document representations

▲□▶▲□▶▲□▶▲□▶ □ のQで

Proposed Enrichment for Text Classification

Knowledge Resource

Knowledge Resource:

- WordNet v3 (Miller, 1995) semantic graph
- Built from sense-annotated SemCor corpus (Landes, 1998)
- Nodes: set of synonymous word senses (Synsets)
- Edges: hyponymy, meronymy, hypernymy, etc. relations

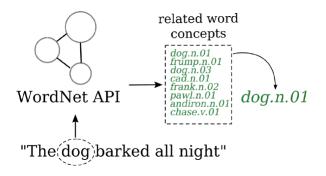
- POS information, lexical literals per sense
- Mine sense information from words in the text

Proposed Enrichment for Text Classification

Knowledge Extraction - Basic

WordNet information retrieval

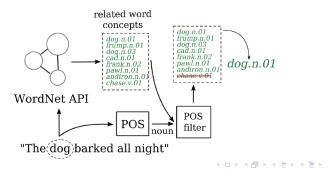
- Disambiguation required for multisense words
- Senses extracted sorted by frequency in WordNet corpus¹
- "Basic" disambiguation: retrieve the most common sense



Proposed Enrichment for Text Classification

Knowledge Extraction - POS

- E.g. Senses for *slack*
 - verb: to avoid responsibility / work
 - noun: deterioration in performance
 - adj: loose, not taught
 - ...
- Extract senses for input word, filter to match input POS
- Proceed with "Basic" disambiguation

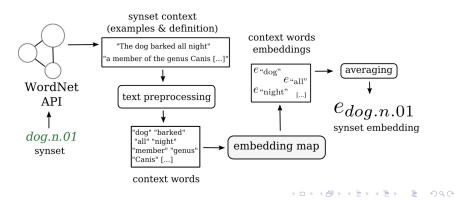


-

Proposed Enrichment for Text Classification

Knowledge Extraction - Semantic embeddings

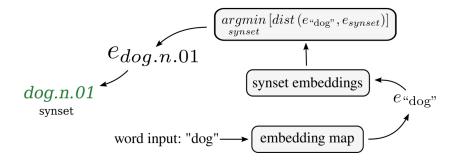
- Build synset vectors from their context (definition & examples)
- Aggregate context to vectors (as in the content-based case)
- Use resulting vector as sense representative
- Lies in the space of content-based embeddings



Proposed Enrichment for Text Classification

Knowledge Extraction - Semantic embeddings

- For an input word, use its content-based embedding
- Select synset having an embedding with the closest distance

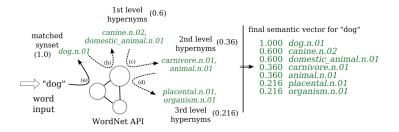


イロト 不得 とうほう イヨン

Proposed Enrichment for Text Classification

Knowledge Extraction - Spreading Activation

- Exploit Wordnet hypernymy structure
- For a extracted synset, also recursively use its parents
- Decay activation (weight) of match with each propagation



Proposed Enrichment for Text Classification

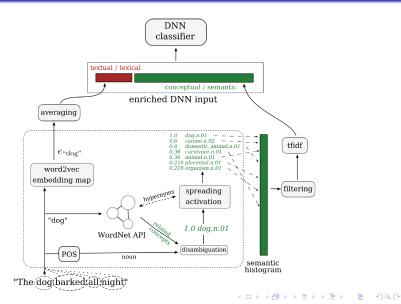
Proposed Configurations

- BoW / TF-IDF semantic vectors
- Keep all / top K / with min. freq. K senses
- Basic / POS / semantic-embedding disambiguation
- With / without spreading activation
- Concatenate with / replace content-based features

Introduction Content-based Methods Representation Enrichment Approaches

Proposed Enrichment for Text Classification

Overview



Introduction	Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion
00000000	000000000	000000000000000000000000000000000000000	00000000	00000000000

Proposed Enrichment for Text Classification

Datasets

- 20Newsgroups: USENET forum posts, 20 labels
- Reuters-21578: Reuters financial articles, 90 labels
- Different domains, text / labelset sizes
- Balanced vs. imbalanced
- Different deegrees of useful POS / Wordnet information

	20-Newsgroups		Reuters	
attribute	train	test	train	test
samples	11,314	7,532	9,584	3,744
class samples	377 - 600	251 - 399	1 - 2,877	1 - 1,087
words	191.164 (587.7)	172.196 (471.37)	92.532 (92.03)	92.899 (105.25)
POS	0.716 (0.07)	0.713 (0.06)	0.672 (0.10)	0.669 (0.10)
WordNet	0.572 (0.09)	0.566 (0.09)	1.479 (0.37)	1.381 (0.38)

Proposed Enrichment for Text Classification

Experimental Setup

- Feed-forward DNN, tuned to 2 layers and 512 neurons
- 50-epoch training with early stopping and LR decay
- 5-fold cross-validation, significance testing
- Mi/ma/per-class F1-score
- Implementation with python3, keras, tensorflow, Wordnet v3

Proposed Enrichment for Text Classification

Experimental Results

State of the art performance

config	Reuters		20-Newsgroups		
system	accuracy	ma-f1	accuracy	ma-f1	
majority baseline	0.290	0.005	0.005	0.053	
embedding-only	0.725	0.295	0.724	0.716	
our approach	0.749	0.378	0.784	0.790	
other trained en	nbeddings				
FastText [Joulin et al., 2017]	0.732	0.319	0.751	0.743	
FastText + retrofitting	0.717	0.260	<u>0.748</u>	<u>0.740</u>	
word2vec + retrofitting	0.709	0.248	0.717	0.710	
pre-trained em	beddings				
glove [Pennington et al., 2014]	0.702	0.275	0.620	0.610	
glove + retrofitting	0.684	0.235	0.587	0.575	
FastText	<u>0.733</u>	<u>0.310</u>	<u>0.734</u>	<u>0.727</u>	
FastText + retrofitting	0.705	0.239	0.706	0.695	
word2vec (300-dim)	<u>0.737</u>	0.311	0.721	0.712	
word2vec (300-dim) + retrofitting	0.689	0.239	0.476	0.465	
single-context [Huang et al., 2012]	0.661	0.227	0.541	0.531	
single-context + retrofitting	0.629	0.175	0.464	0.454	
pre-trained sense embeddings					
multi-context [Huang et al., 2012]	0.570	0.121	0.430	0.412	
SensEmbed [Iacobacci et al., 2015]	<u>0.728</u>	<u>0.308</u>	0.722	0.714	
Supersenses [Flekova and Gurevych, 2016]	0.729	<u>0.313</u>	<u>0.733</u>	<u>0.725</u>	
			a na sun n	$\gamma_{-}\equiv -r_{-}$	

E DQC

Proposed Enrichment for Text Classification

Error Analysis

Prevalent error cases (e.g., 20Newsgroups)

- Semantically similar labels (religion, atheism, christianity)
- Ambiguous / equivocal instances ("Abortion government funding": religion / politics)
- Critical named-entities ("Jack Morris" / baseball, VAX / computer)
- Context misses ("The devil reincarnate": autos / religion)
- $\rightarrow\,$ Important finding: Explainable / edge-case / intuitive errors

Proposed Enrichment for Text Classification

Additional datasets / domains

	bbc		ohsun	ned	
system	accuracy	ma-f1	accuracy	ma-f1	
majority	0.230	0.075	0.172	0.013	
embedding-only	0.970	0.970	0.384	0.300	
ours	0.976	0.976	0.435	0.373	
other pre-trained embeddings					
word2vec	0.973	<u>0.973</u>	0.307	0.244	
word2vec + retrofitting	0.880	0.878	0.313	0.250	
SensEmbed	0.969	0.969	0.328	0.215	
Supersenses	0.852	0.851	0.229	0.148	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Proposed Enrichment for Text Classification

Findings

Overall:

- Enrichment: high, statistically significant performance boost
- State of the art results on multiple datasets and domains
- Explainable, intuitive errors

Proposed configurations:

- Context embeddings show poor performance (thresholds)
- Concatenating works best: content is valuable
- TF-IDF outperformed by count-based semantic vectors
- Spreading activation contribution varies across datasets
- Sem. vectors reduced by 61% retain 99.36% of performance
 - Suggestion: dimensionality reduction for semantic features

Proposed Enrichment for Text Classification

Summary of Contributions

- Investigate unexplored enrichment combination
- 1. Enrichment of deep content-based features \checkmark
 - \rightarrow Word2Vec word embeddings
- 2. Use the **input modification** enrichment \checkmark
 - $\rightarrow\,$ Concatenation / replacement with WordNet sense-based information

ightarrow Utilize the architecture of the knowledge resource

Proposed Enrichment for Text Classification

Summary of Contributions

- Implementation of knowledge-enriched classification system
- Large-scale, cross-domain, comparative empirical evaluation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Proposed enrichment gives statistically significant improvements
- State of the art results
- Identification of directions for future work

Proposed Enrichment for Automatic Summarization

Motivation

Motivation of the proposed method ¹:

- Based on stated goals and previous findings
- Evaluate proposed enrichment in additional task
- Examine the enrichment of other embedding methods
- Investigate dimensionality reduction of enriched features

Proposed Enrichment for Automatic Summarization

Contributions

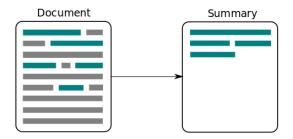
Investigation and evaluation of:

- Proposed enrichment in the summarization task
- Enrichment of different deep content-based features
- Dimensionality reduction of enriched information:
 - via different / diverse reduction methods
 - arriving at different reduced dimensionalities
 - applying reduction at different stages in enrichment

Proposed Enrichment for Automatic Summarization

Extractive Summarization

- Extractive: retain important sentences from source text
- Arrive to a cohesive, informative summary
- Enrichment focus: classification for sentence selection



▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Proposed Enrichment for Automatic Summarization

Enriched Representation

Content-based information:

- CBOW model (Word2Vec), as used previously
- Pretrained subword embeddings (FastText (Joulin, 2016))

▲□▶▲□▶▲□▶▲□▶ □ のQで

• TF-IDF baseline

Semantic enrichment:

- Wordnet semantic features (Miller, 1995)
- "Basic" disambiguation strategy
- Concatenation to the content-based vector

Proposed Enrichment for Automatic Summarization

Dimensionality Reduction

Diverse selection of established methods:

- Principal Component Analysis (PCA) (Jollife, 2011a)
- Transformation with respect to feature variance
- Latent Semantic Analysis (LSA) (Deerwester, 1990)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Feature decomposition to latent topics
- K-Means clustering (Lloyd, 1982)
- Distance-based grouping

Introduction	Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion		
		000000000000000000000000000000000000000				
Proposed Enrichment for Automatic Summarization						

Dataset

- Multiling 2015 Single-Document Summarization Dataset (Giannakopoulos, 2015)
- English Wikipedia articles & summaries
- Sentence-level annotation (1: include in summary, 0: don't) based on ranked ngram overlaps between source / summary
- Severely imbalanced, arrived at oversampling to 2 : 1 for training

feature	train	test
document sentences	233	184.9
document summary sentences	77.9	13.5
document words	25.5	22.8
samples	6990	5546

Proposed Enrichment for Automatic Summarization

Proposed Approaches and Experimental Setup

Content-based information

• CBOW-Word2Vec (50-dim) / FastText (300-dim) / TF-IDF

Dimensionality reduction:

- PCA, LSA or KMeans
- Evaluate reductions to 50, 100, 250, 500 dimensions
- Apply only on knowledge features or the entire enriched vector Learning model

▲□▶▲□▶▲□▶▲□▶ □ のQで

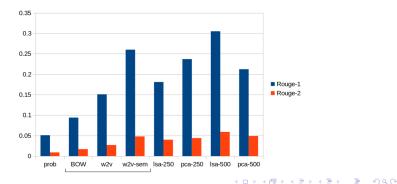
- Feed-forward 5×512 DNN, 5-fold CV
- Rely on Rouge 1 & 2 for evaluation

Proposed Enrichment for Automatic Summarization

Experimental Results

Content-based and enriched features:

- Word2Vec (shown) and FastText perform similarly
- BOW < embeddings < enriched embeddings
- Enrichment: improves summarization performance ۰
- Encourages selection of informative sentences

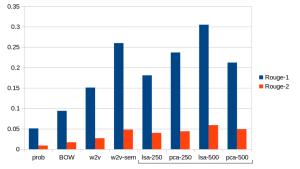


Proposed Enrichment for Automatic Summarization

Experimental Results

Effect of dimensionality reduction methods:

- concatenate then reduce (shown) > reduce then concatenate
- Reduction can improve summarization performance
- PCA features most robust to severe reductions
- LSA > PCA >> KMeans



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Proposed Enrichment for Automatic Summarization

Findings

General:

- BOW < embeddings < enriched embeddings
- Word2Vec \approx FastText perform similarly

Effect of semantic enrichment:

- Encourages selection of informative sentences
- Improves summarization performance

Effect of dimensionality reduction methods:

- Reduction can improve summarization performance
- Performance improves with less reduction, PCA most robust
- LSA > PCA >> KMeans
- concatenate, reduce enriched > reduce knowledge, concatenate

Proposed Enrichment for Automatic Summarization

Contributions

- $\bullet\,$ Proposed enrichment in the summarization task $\checkmark\,$
 - ightarrow Verified improvement over content-based baselines
- $\bullet\,$ Enrichment of different deep content-based features $\checkmark\,$
 - \rightarrow Examined FastText alternative
- ullet Dimensionality reduction of enriched information \checkmark
 - via different / diverse reduction methods
 - arriving at different reduced dimensionalities
 - applying reduction at different stages in enrichment
 - $\rightarrow\,$ Investigated different of LSA, PCA, KM eans in different configurations

Introduction Content-based Methods Representation Enrichment Approaches

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Summarv

Summary of Representation Enrichment

- Multiple avenues for knowledge-based enrichment
- Proposal: input modification/enrichment of deep features
- Rich learned semantics with explainable high-level knowledge
- Classification: state of the art performance
- Summarization: improves content-based approaches, amenable to dim. reduction

Industrial Application

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Acknowledgements

Athens Technology Center (ATC¹): Stavros Niarchos Industrial Scholarship partner

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

¹https://www.atc.gr/

Utilize findings on representation enrichment for [16]:

• Use case: Hate Speech Detection / Multiclass Classification

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Real-world deployment

Desired features:

- Easy deployment, fine-tuning and monitoring
- Easy extension / maintenance

Introduction	Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion		
			00000000			
Applying Findings in an Industrial Setting						
Data						

- English Social media short, noisy texts
- Combination of existing HSD datasets + data crawling
- Domain-specific preprocessing
- HS type classes: racism, sexism, misogyny, religious, none

label	t	rain	test		
	# instances	mean # words	# instances	mean # words	
racism	2448	14.22	15	14.0	
sexism	4213	15.57	15	17.53	
orientation	677	12.78	15	12.47	
religion	581	19.18	15	20.0	
none	7761	13.99	15	16.53	
overall	15680	14.59	75	16.11	

▲□▶▲□▶▲□▶▲□▶ □ のQで

Applying Findings in an Industrial Setting

Representations approaches

Content-based:

- Word2Vec & FastText embeddings
- Bag of Words

Enrichment:

- Bag of Semantic Units
- WordNet hypernym information
- Compiled list of hateful keywords / phrases

Applying Findings in an Industrial Setting

Learning and Tuning

Learning models:

- Feedforward DNN
- Logistic Regression
- Under/over-sampling functionality

Tuning:

• Scalable hyperparameter tuning with ray tune (Liaw, 2018)

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Large-scale grid search

Applying Findings in an Industrial Setting

Monitoring and Deployment

Model monitoring / comparison:

• MLFlow MLops tool (Zaharia 2018)

Deployment:

- MLFlow
- Flask, Swagger (Grinberg 2018, De 2017)

Implementation:

- python 3.8, based on the numpy / sklearn stack
- Domain-specific packages for crawling, preprocessing, etc.

- Extensible, optimized Hate Speech Detection system
- Utilization of state of the art in representation enrichment

• Utilizing modern approaches in MLOps

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion
				0000000000000
Contributions				

Content-based representations:

Contributions

- Comparative literature review
 - Organization with respect to representation sophistication
 - $\rightarrow\,$ Verified motivation for pursuit of rich, expressive features
- Proposal of novel approaches and applications
 - Vector-based and graph-based representations
 - Classification, summarization, clustering tasks
 - Text, image and audio data modalities
 - → Very difficult / complex to discover one universally optimal approach

Contributions

Contributions (cont.)

Representation enrichment with external knowledge:

- Comparative literature review on enrichment
 - Organization with respect to enrichment type
 - Detailed presentation of knowledge resources
 - $\rightarrow\,$ Identified under-investigated approaches in the literature
- Proposal of novel enrichment strategies
 - Input enrichment of deep features with WordNet semantics
 - $\rightarrow\,$ Large-scale investigation on text classification, SotA results
 - Extension with dim. reduction and additional deep features
 - → Investigation on text summarization, verifying improvements
- Utilization of conducted research in an industrial setting

Contributions

Misc. Contributions

Academic activities during the project:

- Support work for DiT-UoA (exams / courses)
- Reviewing for journals, conferences and workshops (e.g. Machine Learning, CSL, ICTAI)
- Co-organization of conferences and workshops (e.g. SETN2020, FNP/FNS 2020, 2021)
- Contribution / creation of relevant open-source software (e.g. JINSECT)

• BSc. / MSc. student theses co-supervision

Introduction Content-based Methods	Representation Enrichment Approaches	Industrial Application	Conclusion
Findings			
Findings			

Key take-aways:

- High-level representation semantics crucial for usefulness in downstream tasks
- Representation has significant impact on learning for different tasks / modalities
- Improvable with high-quality human knowledge
- Proposal effectively exploits deep learning features and conceptual information
- Improves the state of the art by applying representation enrichment

00000000 Future Work	000000000	000000000000000000000000000000000000000	0000000	00000000000				
Future Work								

Proposed approach:

uluit

- Additional knowledge resources
- Combination of multiple knowledge resources
- Dimensionality reduction with representation learning (e.g. autoencoders, FeedForward networks)

Representation enrichment:

- Development of easy-to-use knowledge resources for modalities other than text
- Combination of multiple enrichment strategies (e.g. input modification followed by refinement)

List of publications

Conferences

- 1 <u>N. Pittaras</u>, V. Karkaletsis, "A study of semantic augmentation of word embeddings for extractive summarization", Multilling Workshop, RANLP2019, Varna, Bulgaria.
- 2 N. Gialitsis, N. Pittaras, P. Stamatopoulos, "A topic-based sentence representation for extractive text summarization", Multilling Workshop, RANLP2019, Varna, Bulgaria.
- 3 C. Themeli, G. Giannakopoulos, <u>N. Pittaras</u> "A study of text representations for Hate Speech Detection", CICLING 2019, La Rochelle, France.
- 4 <u>N. Pittaras</u>, G. Papadakis, G. Stamoulis, G. Argyriou, E. K. Taniskidou, E. Thanos, G. Giannakopoulos, L.Tsekouras, E. Koubarakis, "GeoSensor: Semantifying Change and Event Detection over Big Data", SAC 2019, Limassol, Cyprus.
- 5 A. Kosmopoulos, A. Liapis, G. Giannakopoulos, <u>N. Pittaras</u>. (2020). Summarizing Game Reviews: First Contact. SETN Workshops.
- 6 M. El-Haj, M. Litvak, N. <u>Pittaras</u>, G. Giannakopoulos. "The Financial Narrative Summarisation Shared Task (FNS 2020)." Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation. 2020.
- 7 G. Papadakis, L. Tsekouras, M. Thanos, <u>N. Pittaras</u>, G. Simonini, D. Skoutas, P. Isaris, G. Giannakopoulos, T. Palpanas, M. Koubarakis. "JedAI3: beyond batch, blocking-based Entity Resolution." EDBT. 2020.
- 8 G. George, <u>N. Pittaras</u>. "The Summary Evaluation Task in the MultiLing-RANLP 2019 Workshop." Proceedings of the Workshop MultiLing 2019: Summarization Across Languages, Genres and Sources. 2019.
- 9 <u>N. Pittaras,</u> G. Giannakopoulos, L. Tsekouras, I. Varlamis. "Document clustering as a record linkage problem." Proceedings of the ACM Symposium on Document Engineering 2018. 2018.

List of publications

Journals

- 10 <u>N. Pittaras</u>, G. Giannakopoulos, G. Papadakis, V. Karkaletsis, "Text classification with semantically enriched word embeddings", Natural Language Engineering Special Issue: Informing Neural Architectures for NLP with Linguistic and background Knowledge
- 11 <u>N. Pittaras</u>, G. Giannakopoulos, P. Stamatopoulos, V. Karkaletsis, "Content-based and knowledge-enriched representations for classification across modalities: a survey", ACM Computing Surveys (submitted, under review)
- 12 <u>N. Pittaras</u>, T. Giannakopoulos, S. Perantonis, "A study of deep audio-visual fusion methods for video classification" (journal paper, to be submitted)

Book Chapters

- 13 G. Giannakopoulos, G. Kiomourtzis, <u>N. Pittaras</u>, V. Karkaletsis. Scaling and Semantically-Enriching Language-Agnostic Summarization. In A. Fiori (Ed.), Trends and Applications of Text Summarization Techniques (pp. 244-292). IG Global, 2020.
- 14 <u>N. Pittaras</u>, S. Montanelli, G. Giannakopoulos, A. Ferrara, V. Karkaletsis. "Crowdsourcing in single-document summary evaluation: the argo way." Multilingual Text Analysis: Challenges, Models, and Approaches. 2019. 245-280.

Tech. reports

- 15 <u>N. Pittaras</u>, N. Kostagiolas, C. Nikolaou, G. Giannakopoulos. "Exploring different sequence representations and classification methods for the prediction of nucleosome positioning," bioRxiv (2018): 482612.
- 16 <u>N. Pittaras</u>, G. Giannakopoulos, V. Karkaletsis, "Enriched Representations for Hate Speech Detection" (technical report, to be finalized)

Thank you

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Appendix

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Hate Speech Detection

Modality / Task:

• Text, Classification

Approaches:

- BoW, N-gram Graphs, GloVe Embeddings, syntax, spelling
- Different classifiers (KNN, LR, NB, MLP, RF)

Findings:

• Representation statistically more significant than classifier

(日)

- GloVe word embeddings achieve best performance
- N-gram graph representations produce rich features

Extractive Summarization of Web Documents

Modality / Task:

• Text, Automatic Summarization

Approaches:

- Modeled as binary sentence classification
- Topic-based vs shallow features (LDA, TF-IDF)
- Different classifiers (DT, KNN, GB, NB, LiDA, QDA, LR, SVM) Findings:

- LDA topic-based method produces robust features
- Improvement over the TF-IDF-based classification

Automatic Summarization of Video Game Reviews

Modality / Task:

• Text, Automatic Summarization

Approaches:

- Multiple aspect identification & labelling pipelines
- K-Means clustering, keyword matching, sentiment analysis
- Evaluated with feedback from human surveys
- TF-IDF and BERT representations with LR classifiers
- NewSum for extractive sentence selection

Findings:

- No clear winner between evaluted representations
- Verified aspect extraction as a crucial step
- Identified unique challenges for the domain of game reviews

Clustering, Summarization and Classification of Web Documents and Social Media in the Security Domain

Modality / Task:

• Text, Classification, Clustering, Automatic Summarization Approaches:

- N-Gram Graphs for text / social media representations
- Similarity-based clustering, summarization, classification
- Integration with multi-purpose platform operating on diverse big data sources

Findings:

- Graph-based approaches can provide rich representations
- Identified performance bottlenecks on similarity extraction

Scaling and Enrichment of Automatic Summarization

Modality / Task:

• Text, Automatic Summarization

Approaches:

- Expand graph-based text representations (e.g. with NER)
- Similarity extraction by distributed execution (SPARK)

Findings:

• Considerable acceleration via SPARK-based operations

(日)

• Identified optimal speedup / hardware trade-offs

Classifying Videos with Multimodal DNNs

Modality / Task:

Video (image and audio), Classification

Approaches:

- FeedForward / LSTM networks for handling temporal relations
- Audio / visual modalities, multimodal configurations
- Multiple, diverse video datasets and domains

Findings:

- LSTMs outperformed by FF nets on audio and vice versa
- Considerable impact of the modality and domain
- Weighted linear combination of single-modality works best
- Deep representations outperform engineered features

Similarities to Content-based Paradigms

Input enrichment / modification

- Resemblance to low-level / template-matching methods
- Knowledge handled as distinct data coordinates
- Explainable, discrete features

Knowledge-based refinement

- Resemblance to aggregation methods
- Aggregation mechanism defined, parameterized by knowledge
- Mostly explainable, distributed features

Knowledge-aware end-to-end systems

- Resemblance to deep representation learning
- Jointly learn to consider knowledge along with content
- Non-explainable, distributed features