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Introduction



Introduction Content-based Methods Representation Enrichment Approaches Industrial Application Conclusion

Background

Motivation

Focus: Machine learning (ML) systems

Applications crucial for social / scientific / commercial

ecosystems

E.g. classification, clustering, summarization solutions

Improving such systems can yield significant benefits
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Background

Typical Machine Learning Pipeline

Dataset: real-world objects / ground truth d

Representation: Maps d to a vector format

Represented objects: Vector format [

Learning model: finds associations / patterns in [

Predictions: useful information produced by learning model
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Background

Improving ML pipeline performance

Indicative avenues for ML system improvement

Resource-oriented:

More compute (GPUs / training times)

Greater quantity / quality of training data

Modelling-oriented:

Improve the representation approach

Improve the learning model
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Thesis Focus

Importance of Representations

Early step in the pipeline, benefits / errors propagate

[ : abstraction of d: May discard noise / lose information

Important semantics/context may/may not be included in [

Only input to Learning model: [

Thus, semantic gap between [ and d impacts performance
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Thesis Focus

Representation Enrichment

How can we narrow / bridge the semantic gap?

Utilize resources of curated, high-level, structured knowledge

(e.g. ontologies, lexicons, knowledge bases, class hierarchies)

Go beyond content-based representations via enrichment
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Thesis Focus
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Go beyond content-based representations via enrichment
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Thesis Focus

Goals

Holistic study of representations for ML problems, including:

Content-based representation approaches

Methods for knowledge-based representation enrichment

Available structured human knowledge resources

Broad investigation:

Different ML tasks (classification, clustering, summarization)

Different data modalities (text, images, audio)
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Thesis Focus

Contributions

Content-based Representations:

Literature review [11]

Novel proposals / applications [2][3][4][5][12][13]

Representation Enrichment:

Overview of different exploitable knowledge resources [11]

Literature review for representation enrichment methods [11]

Novel proposals for enriching different ML tasks [1][10][11]

Consolidation of findings to an industrial ML application [16]
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Content-based Methods
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Literature Overview

Focus of the Study

Study scope 1:

Content-based: consider only intra-instance content

No additional/external information sources

Focus on the context of classification

Text, image, audio data modalities

Contributions: identified three broad paradigms

1. Low-level / template-matching representations

2. Aggregation-based representations

3. Deep representation learning approaches

1
Pittaras et al., Content-based and knowledge-enriched representations for classification across modalities: a survey,

ACM CSUR (under review)
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Literature Overview

Low-level / Template-Matching

Locally / globally apply preconfigured templates

Template output responses used as features

E.g. Bag of Words / Features, simple input statistics, visual /

audio descriptors
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Literature Overview

Aggregation-based

Utilize ensembles of low-level representation instances

Improve by applying pre-defined, engineered processing steps

Transform / combine into (reduced) distributed latent space

E.g. Clustering, factorization/decomposition, topic modelling
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Literature Overview

Deep representation learning

Non-linear hierarchies (simple to rich), distributed features

End-to-end task & representation learning

High pretraining & transfer-learning capabilities

E.g. Feedforward, convolutional, recurrent NNs
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Literature Overview

Per-paradigm Pros/Cons

Generally observed:

paradigm / attributes low-level aggregation deep

high-level semantics X ?

explainable ? X

data-driven / learned X ?

low-dimensional / space-efficient ?

data efficient / lean X

computationally efficient ? X X
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Literature Overview

Findings

Multiple representation paradigms

Strength and weaknesses for each; no one-size-fits-all

Paradigm evolution: low→ aggregation-based→ deep

Evolution reflects search for rich, informative features
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Per-application Studies and Novel Proposals

Overview

Motivation:

Improve understanding accross different applications

Identify task / domain-specific challenges / points of

improvement

Broad investigation:

Across tasks (classification, summarization, clustering)

In conjunction with different, diverse learning models

Across different domains / modalities
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Per-application Studies and Novel Proposals

Focused studies

Hate Speech Detection [3]

Text, Classification, Deep Word Embeddings, NGGs

Extractive Summarization of Web Documents [2]

Text, Summarization, Topic-based features

Automatic Summarization of Video Game Reviews [5]

Text, Summarization, Novel domain, Deep Embeddings

Documents / Social Media Analysis in the Security Domain [4]

Text, Clustering, Classification, Summarization, NGGs

Scaling and Enrichment of Automatic Summarization [13]

Text, Summarization, Performance Scaling, Utilization of NER

information

Classifying Videos with Multimodal DNNs [12]

Video (Image, Audio), Classification, Deep Features
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Summary

Summary of Content-based Representations

Multiple, diverse approaches; no one-size-fits-all method

Indications for no-free-lunch theorem for representations

Trend towards semantically rich representations

Richness beneficial to multiple tasks, domains and modalities

→ Strengthen motivation to examine representation

enrichment
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Representation Enrichment

Approaches
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Motivation

Representation Enrichment

Thesis focus:

Representation enrichment with human knowledge can

improve task performance

Enriching with human knowledge may address:

Missing contextual information

Missing domain-specific knowledge

Ambiguity in the data and their generation process

Need for transparency & explainability
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Literature Overview

Focus of the Study

Study 1 scope:

Enrichment: look beyond instance content

Mine resources of structured knowledge

Focus on the context of classification

Text, image, audio data modalities

Contributions:

Summary of structured knowledge resources

Identified three enrichment paradigms

1
Pittaras et al., Content-based and knowledge-enriched representations for classification across modalities: a survey,

ACM CSUR (under review)
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Literature Overview

Knowledge Resources

Sources of exploitable structured human knowledge:

Semantic Graphs (Wordnet, Framenet, ConceptNet)

Property-value stores (DBpedia, Wikidata)

Lexicons (E-ANEW, GeneralInquirer)

Hierarchical labelsets / ontologies (Imagenet, Audioset)

How do we use knowledge resource?

Retrieve relevant knowledge per instance

Integrate knowledge based on enrichment method
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Literature Overview

Input enrichment / modification

Augment feature set from content-based methods

Inject knowledge-based features in the representation

Result: discrete, joint content + knowledge-based feature space
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Literature Overview

Knowledge-based refinement

Transform / combine / aggregate content-based features

Refinement guided / oriented / informed via knowledge

Distributed enriched features
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Literature Overview

Knowledge-aware deep systems

Hierarchical, deep task / representation end-to-end learners

Ingest content-based and knowledge-based information

Enrichment process learned jointly with the representation
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Literature Overview

Findings

Multiple, diverse enrichment avenues in the literature:

Correspondence to content-based paradigms

Similar strengths and weaknesses apply

- Low-level/template-matching→ input modification/enrichment

- Aggregation-based→ knowledge-based refinement

- Deep rep. learners→ end-to-end knowledge-aware systems

→ Can we select and utilize the best elements per

paradigm?
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Literature Overview

Proposed Approach

Proposed approach:

Explore promising combination not explored in the literature:

1. Enrichment of deep content-based features

2. Use the input modification enrichment

Combine strengths:

- Rich, expressive content-based features

- Intuitive, explainable enriched representation
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Proposed Enrichment for Text Classification

Overview

Proposed enrichment approach 1:

Word embedding features

Disambiguated word senses from semantic graph

Input enrichment / modification

Exploit knowledge resource structure via spreading activation

Deep Neural Network classifier

1
Pittaras et al., Text classification with semantically enriched word embeddings, NLE Special Issue: Informing Neural

Architectures for NLP with Linguistic and background Knowledge
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Proposed Enrichment for Text Classification

Contributions

Implementation of knowledge-enriched classification system

Large-scale, cross-domain, comparative empirical evaluation

Verification of performance benefits of proposed enrichment

Statistically significant results

State of the art results

Identification of future directions for improvement
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Proposed Enrichment for Text Classification

Overview
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Proposed Enrichment for Text Classification

Content-based features

Content-based component:

Neural word embeddings

CBOW model (Word2Vec, (Mikolov, 2013a))

50-epoch training, 10-word window

Average word vectors to document representations



Introduction Content-based Methods Representation Enrichment Approaches Industrial Application Conclusion

Proposed Enrichment for Text Classification

Knowledge Resource

Knowledge Resource:

WordNet v3 (Miller, 1995) semantic graph

Built from sense-annotated SemCor corpus (Landes, 1998)

Nodes: set of synonymous word senses (Synsets)

Edges: hyponymy, meronymy, hypernymy, etc. relations

POS information, lexical literals per sense

Mine sense information from words in the text
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Proposed Enrichment for Text Classification

Knowledge Extraction - Basic

WordNet information retrieval

Disambiguation required for multisense words

Senses extracted sorted by frequency in WordNet corpus1

''Basic'' disambiguation: retrieve the most common sense

1
wrt. NLTK Wordnet API
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Proposed Enrichment for Text Classification

Knowledge Extraction - POS

E.g. Senses for slack
verb: to avoid responsibility / work

noun: deterioration in performance

adj: loose, not taught

. . .

Extract senses for input word, filter to match input POS

Proceed with ''Basic'' disambiguation
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Proposed Enrichment for Text Classification

Knowledge Extraction - Semantic embeddings

Build synset vectors from their context (definition & examples)

Aggregate context to vectors (as in the content-based case)

Use resulting vector as sense representative

Lies in the space of content-based embeddings
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Proposed Enrichment for Text Classification

Knowledge Extraction - Semantic embeddings

For an input word, use its content-based embedding

Select synset having an embedding with the closest distance
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Proposed Enrichment for Text Classification

Knowledge Extraction - Spreading Activation

Exploit Wordnet hypernymy structure

For a extracted synset, also recursively use its parents

Decay activation (weight) of match with each propagation
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Proposed Enrichment for Text Classification

Proposed Configurations

BoW / TF-IDF semantic vectors

Keep all / top . / with min. freq. . senses

Basic / POS / semantic-embedding disambiguation

With / without spreading activation

Concatenate with / replace content-based features



Introduction Content-based Methods Representation Enrichment Approaches Industrial Application Conclusion

Proposed Enrichment for Text Classification

Overview
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Proposed Enrichment for Text Classification

Datasets

20Newsgroups: USENET forum posts, 20 labels

Reuters-21578: Reuters financial articles, 90 labels

Different domains, text / labelset sizes

Balanced vs. imbalanced

Different deegrees of useful POS / Wordnet information

20-Newsgroups Reuters

attribute train test train test

samples 11,314 7,532 9,584 3,744

class samples 377 - 600 251 - 399 1 - 2,877 1 - 1,087

words 191.164 (587.7) 172.196 (471.37) 92.532 (92.03) 92.899 (105.25)

POS 0.716 (0.07) 0.713 (0.06) 0.672 (0.10) 0.669 (0.10)

WordNet 0.572 (0.09) 0.566 (0.09) 1.479 (0.37) 1.381 (0.38)
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Proposed Enrichment for Text Classification

Experimental Setup

Feed-forward DNN, tuned to 2 layers and 512 neurons

50-epoch training with early stopping and LR decay

5-fold cross-validation, significance testing

Mi/ma/per-class F1-score

Implementation with python3, keras, tensorflow, Wordnet v3
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Proposed Enrichment for Text Classification

Experimental Results

State of the art performance
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Proposed Enrichment for Text Classification

Error Analysis

Prevalent error cases (e.g., 20Newsgroups)

Semantically similar labels (religion, atheism, christianity)

Ambiguous / equivocal instances (''Abortion government

funding'': religion / politics)

Critical named-entities (''Jack Morris'' / baseball, VAX /

computer )

Context misses (''The devil reincarnate'': autos / religion)

→ Important finding: Explainable / edge-case / intuitive errors
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Proposed Enrichment for Text Classification

Additional datasets / domains
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Proposed Enrichment for Text Classification

Findings

Overall:

Enrichment: high, statistically significant performance boost

State of the art results on multiple datasets and domains

Explainable, intuitive errors

Proposed configurations:

Context embeddings show poor performance (thresholds)

Concatenating works best: content is valuable

TF-IDF outperformed by count-based semantic vectors

Spreading activation contribution varies across datasets

Sem. vectors reduced by 61� retain 99.36� of performance

Suggestion: dimensionality reduction for semantic features
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Proposed Enrichment for Text Classification

Summary of Contributions

Investigate unexplored enrichment combination

1. Enrichment of deep content-based features

→ Word2Vec word embeddings

2. Use the input modification enrichment

→ Concatenation / replacement with WordNet sense-based

information

→ Utilize the architecture of the knowledge resource
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Proposed Enrichment for Text Classification

Summary of Contributions

Implementation of knowledge-enriched classification system

Large-scale, cross-domain, comparative empirical evaluation

Proposed enrichment gives statistically significant

improvements

State of the art results

Identification of directions for future work
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Proposed Enrichment for Automatic Summarization

Motivation

Motivation of the proposed method 1:

Based on stated goals and previous findings

Evaluate proposed enrichment in additional task

Examine the enrichment of other embedding methods

Investigate dimensionality reduction of enriched features

1
Pittaras et al., A study of semantic augmentation of word embeddings for extractive summarization, Multiling 2019
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Proposed Enrichment for Automatic Summarization

Contributions

Investigation and evaluation of:

Proposed enrichment in the summarization task

Enrichment of different deep content-based features

Dimensionality reduction of enriched information:

via different / diverse reduction methods

arriving at different reduced dimensionalities

applying reduction at different stages in enrichment
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Proposed Enrichment for Automatic Summarization

Extractive Summarization

Extractive: retain important sentences from source text

Arrive to a cohesive, informative summary

Enrichment focus: classification for sentence selection
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Proposed Enrichment for Automatic Summarization

Enriched Representation

Content-based information:

CBOW model (Word2Vec), as used previously

Pretrained subword embeddings (FastText (Joulin, 2016))

TF-IDF baseline

Semantic enrichment:

Wordnet semantic features (Miller, 1995)

''Basic'' disambiguation strategy

Concatenation to the content-based vector
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Proposed Enrichment for Automatic Summarization

Dimensionality Reduction

Diverse selection of established methods:

Principal Component Analysis (PCA) (Jollife, 2011a)

- Transformation with respect to feature variance

Latent Semantic Analysis (LSA) (Deerwester, 1990)

- Feature decomposition to latent topics

K-Means clustering (Lloyd, 1982)

- Distance-based grouping
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Proposed Enrichment for Automatic Summarization

Dataset

Multiling 2015 Single-Document Summarization Dataset

(Giannakopoulos, 2015)

English Wikipedia articles & summaries

Sentence-level annotation (1: include in summary, 0: don't)

based on ranked ngram overlaps between source / summary

Severely imbalanced, arrived at oversampling to 2 : 1 for
training
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Proposed Enrichment for Automatic Summarization

Proposed Approaches and Experimental Setup

Content-based information

CBOW-Word2Vec (50-dim) / FastText (300-dim) / TF-IDF

Dimensionality reduction:

PCA, LSA or KMeans

Evaluate reductions to 50, 100, 250, 500 dimensions

Apply only on knowledge features or the entire enriched vector

Learning model

Feed-forward 5× 512 DNN, 5-fold CV

Rely on Rouge 1 & 2 for evaluation
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Proposed Enrichment for Automatic Summarization

Experimental Results

Content-based and enriched features:

Word2Vec (shown) and FastText perform similarly

BOW < embeddings < enriched embeddings

Enrichment: improves summarization performance

Encourages selection of informative sentences
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Proposed Enrichment for Automatic Summarization

Experimental Results

Effect of dimensionality reduction methods:

concatenate then reduce (shown) > reduce then concatenate

Reduction can improve summarization performance

PCA features most robust to severe reductions

LSA > PCA >> KMeans
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Proposed Enrichment for Automatic Summarization

Findings

General:

BOW < embeddings < enriched embeddings

Word2Vec ≈ FastText perform similarly

Effect of semantic enrichment:

Encourages selection of informative sentences

Improves summarization performance

Effect of dimensionality reduction methods:

Reduction can improve summarization performance

Performance improves with less reduction, PCA most robust

LSA > PCA >> KMeans

concatenate, reduce enriched > reduce knowledge, concatenate
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Proposed Enrichment for Automatic Summarization

Contributions

Proposed enrichment in the summarization task

→ Verified improvement over content-based baselines

Enrichment of different deep content-based features

→ Examined FastText alternative

Dimensionality reduction of enriched information

via different / diverse reduction methods

arriving at different reduced dimensionalities

applying reduction at different stages in enrichment

→ Investigated different of LSA, PCA, KMeans in different

configurations
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Summary

Summary of Representation Enrichment

Multiple avenues for knowledge-based enrichment

Proposal: input modification/enrichment of deep features

- Rich learned semantics with explainable high-level knowledge

- Classification: state of the art performance

- Summarization: improves content-based approaches, amenable

to dim. reduction
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Industrial Application
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Applying Findings in an Industrial Setting

Requirements

Utilize findings on representation enrichment for [16]:

Use case: Hate Speech Detection / Multiclass Classification

Real-world deployment

Desired features:

Easy deployment, fine-tuning and monitoring

Easy extension / maintenance
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Applying Findings in an Industrial Setting

Data

English Social media short, noisy texts

Combination of existing HSD datasets + data crawling

Domain-specific preprocessing

HS type classes: racism, sexism, misogyny, religious, none
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Applying Findings in an Industrial Setting

Representations approaches

Content-based:

Word2Vec & FastText embeddings

Bag of Words

Enrichment:

Bag of Semantic Units

WordNet hypernym information

Compiled list of hateful keywords / phrases
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Applying Findings in an Industrial Setting

Learning and Tuning

Learning models:

Feedforward DNN

Logistic Regression

Under/over-sampling functionality

Tuning:

Scalable hyperparameter tuning with ray tune (Liaw, 2018)

Large-scale grid search
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Applying Findings in an Industrial Setting

Monitoring and Deployment

Model monitoring / comparison:

MLFlow MLops tool (Zaharia 2018)

Deployment:

MLFlow

Flask, Swagger (Grinberg 2018, De 2017)

Implementation:

python 3.8, based on the numpy / sklearn stack

Domain-specific packages for crawling, preprocessing, etc.
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Applying Findings in an Industrial Setting

Contributions

Extensible, optimized Hate Speech Detection system

Utilization of state of the art in representation enrichment

Utilizing modern approaches in MLOps
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Conclusion
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Contributions

Contributions

Content-based representations:

Comparative literature review

Organization with respect to representation sophistication

→ Verified motivation for pursuit of rich, expressive

features

Proposal of novel approaches and applications

Vector-based and graph-based representations

Classification, summarization, clustering tasks

Text, image and audio data modalities

→ Very difficult / complex to discover one universally

optimal approach
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Contributions

Contributions (cont.)

Representation enrichment with external knowledge:

Comparative literature review on enrichment

Organization with respect to enrichment type

Detailed presentation of knowledge resources

→ Identified under-investigated approaches in the literature

Proposal of novel enrichment strategies

Input enrichment of deep features with WordNet semantics

→ Large-scale investigation on text classification, SotA

results

Extension with dim. reduction and additional deep features

→ Investigation on text summarization, verifying

improvements

Utilization of conducted research in an industrial setting
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Contributions

Misc. Contributions

Academic activities during the project:

Support work for DiT-UoA (exams / courses)

Reviewing for journals, conferences and workshops

(e.g. Machine Learning, CSL, ICTAI)

Co-organization of conferences and workshops

(e.g. SETN2020, FNP/FNS 2020, 2021)

Contribution / creation of relevant open-source software

(e.g. JINSECT)

BSc. / MSc. student theses co-supervision
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Findings

Findings

Key take-aways:

High-level representation semantics crucial for usefulness in

downstream tasks

Representation has significant impact on learning for different

tasks / modalities

Improvable with high-quality human knowledge

Proposal effectively exploits deep learning features and

conceptual information

Improves the state of the art by applying representation

enrichment
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Future Work

Future Work

Proposed approach:

Additional knowledge resources

Combination of multiple knowledge resources

Dimensionality reduction with representation learning (e.g.

autoencoders, FeedForward networks)

Representation enrichment:

Development of easy-to-use knowledge resources for

modalities other than text

Combination of multiple enrichment strategies (e.g. input

modification followed by refinement)
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Hate Speech Detection

Modality / Task:

Text, Classification

Approaches:

BoW, N-gram Graphs, GloVe Embeddings, syntax, spelling

Different classifiers (KNN, LR, NB, MLP, RF)

Findings:

Representation statistically more significant than classifier

GloVe word embeddings achieve best performance

N-gram graph representations produce rich features
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Extractive Summarization of Web Documents

Modality / Task:

Text, Automatic Summarization

Approaches:

Modeled as binary sentence classification

Topic-based vs shallow features (LDA, TF-IDF)

Different classifiers (DT, KNN, GB, NB, LiDA, QDA, LR, SVM)

Findings:

LDA topic-based method produces robust features

Improvement over the TF-IDF-based classification
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Automatic Summarization of Video Game Reviews

Modality / Task:

Text, Automatic Summarization

Approaches:

Multiple aspect identification & labelling pipelines

K-Means clustering, keyword matching, sentiment analysis

Evaluated with feedback from human surveys

TF-IDF and BERT representations with LR classifiers

NewSum for extractive sentence selection

Findings:

No clear winner between evaluted representations

Verified aspect extraction as a crucial step

Identified unique challenges for the domain of game reviews
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Clustering, Summarization and Classification of Web

Documents and Social Media in the Security Domain

Modality / Task:

Text, Classification, Clustering, Automatic Summarization

Approaches:

N-Gram Graphs for text / social media representations

Similarity-based clustering, summarization, classification

Integration with multi-purpose platform operating on diverse

big data sources

Findings:

Graph-based approaches can provide rich representations

Identified performance bottlenecks on similarity extraction
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Scaling and Enrichment of Automatic Summarization

Modality / Task:

Text, Automatic Summarization

Approaches:

Expand graph-based text representations (e.g. with NER)

Similarity extraction by distributed execution (SPARK)

Findings:

Considerable acceleration via SPARK-based operations

Identified optimal speedup / hardware trade-offs
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Classifying Videos with Multimodal DNNs

Modality / Task:

Video (image and audio), Classification

Approaches:

FeedForward / LSTM networks for handling temporal relations

Audio / visual modalities, multimodal configurations

Multiple, diverse video datasets and domains

Findings:

LSTMs outperformed by FF nets on audio and vice versa

Considerable impact of the modality and domain

Weighted linear combination of single-modality works best

Deep representations outperform engineered features
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Similarities to Content-based Paradigms

Input enrichment / modification

Resemblance to low-level / template-matching methods

Knowledge handled as distinct data coordinates

Explainable, discrete features

Knowledge-based refinement

Resemblance to aggregation methods

Aggregation mechanism defined, parameterized by knowledge

Mostly explainable, distributed features

Knowledge-aware end-to-end systems

Resemblance to deep representation learning

Jointly learn to consider knowledge along with content

Non-explainable, distributed features
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