
Image registration with unified particle
swarm optimization

Dept. of Computer Science and Engineering, University of Ioannina

Author : Nikiforos Pittaras

October 2013



Acknowledgements

A sincere thank you to my supervisors and the people close to me for their con-
tinuous moral and material support.



Abstract

In this work we test the unified particle swarm optimization algorithm at the prob-
lem of image registration, using normalized mutual information, for rigid and non
rigid applications. UPSO is tested for estimation of optimal parameters on rigid
body registration reference problems and the parameter set result is applied on
non rigid examples , using diffeomorphic grid - based warps. Our goal is to verify
the efficiency of mutual information as a registration metric and the robustness of
unified PSO.
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Introduction
Image registration is the field of image analysis involved in efficiently estimating
the correct mapping between correlated images. This is essential when processing
or interpretation require the images to be aligned, a constraint not always met, i.e.
when images are produced using different modalities. It has a wide range of ap-
plications, including medical imaging, computer vision and image reconstruction
and has been the subject of a lot of research in the past years.

Image registration is usually set up with a fixed reference image and one or
more images that are transformations of the first, called target or floating image(s).
From here on we will assume a single floating image for simplicity. The goal of
registration is to align the floating to the reference image via a transformation
applied on the former, with the alignment quality measured by a similarity func-
tion. The transformation type is based on the modality and the application itself,
ranging from simple rigid body and affine transforms to non rigid deformations.
In this study we tackle rigid body transformation problems, and non rigid, grid-
based diffeomorphic warps. After the transformation, interpolation is required to
map the output to image space coordinates.

Since non trivial problems include a large or continuous transformation pa-
rameter space, an efficient optimization method is necessary to get results with
acceptable accuracy and computation time. We will use the unified particle swarm
optimization method (UPSO) for approximating a solution, a variant of PSO that
allows additional control of the swarm’s behaviour, directly affecting the algo-
rithm’s exploration, convergence and fine-grain search capabilities.

Selecting the similarity function depends on the registration strategy. Feature
based registration includes a manual or automated selection of landmark points,
assumed to contain enough image information that their alignment will corre-
spond to the registration of the images themselves, as opposed to intensity based
registration which takes into account all the pixels in the images to be aligned,
with possible restrictions arising from the transformation - dependent overlap.
Following the latter paradigm, we have selected normalized mutual information,
a variant of mutual information showing robustness to variable overlap between
the reference and floating images. Mutual information is a concept derived from
information theory, extensively examined and widely used in image registration.

In figure 1.1 the general steps involved in image registration are illustrated.
We will continue by analysing the main theoretical components of the process we
follow and end by discussing the experiments with their results and our conclu-
sions.
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Figure 1.1: Image registration general steps.
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1 Theoretical background
Overview

In this section we introduce the theoretical components of this study. We begin by
describing the image transformation mechanisms for the rigid and non rigid case,
followed by the similarity measure, mutual information. Lastly, we present PSO
and its unified variant, the optimization algorithm used in our experiments.

1.1 Rigid body transformations
The first experimentation phase deals with rigid transformations. Recall the reg-
istration setup, where given two images (or image volumes), the reference and
the floating, our aim is to find the transformation that best maps the latter to the
former. In rigid registration, the floating image is assumed to be a product of a
rigid body transformation, and such transformations will be used to match it to
the reference. We will use two dimensional images, in grayscale format.

We continue by introducing rigid body transformations and its variants used.

1.1.1 Definition

A rigid body is an ideal description of an n-dimensional solid object, able only to
be displaced and rotated, in Rn.Let R be our reference image. Since R is consid-
ered a transformation of the floating image Fl, we can write the following.

R = Trigid(p, Fl) (1.1)

where p = [θ, tr, tc] is a parameter vector for the rigid transformation Trigid(·, ·) that
maps F to R, containing the rotation and row, column translation values respec-
tively. Since we are dealing with two-dimensional images, we use an augmented,
2D transformation matrix:

Mrigid =

 cosθ −sinθ tr

sinθ cosθ tc

0 0 1

 (1.2)

This matrix rotates a 2D homogeneous coordinate vector θ radians around the
rotation origin and then shifts it along the vector [tx, ty]ᵀ. Intuitively, a rigid trans-
formation treats the image as a solid, non-deformable surface that can freely move
and rotate but not curve or shear. Distances between points before and after the
transformation are preserved, which means that angles, straight and parallel lines
mantain their properties and values.
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Figure 1.2: A scaled (left) and non scaled (right) counter-clockwise 30 degree rotation.
The frame on the left is a scaled to fit the image, while the image on the right is cropped

and the frame size is constant. We use the latter paradigm.

1.1.2 Forward and inverse mapping

The matrix 1.2 rotates around the origin (0, 0), which in the context of image
indices refers to an image corner, depending on the implementation (usually the
upper left, either within or outside the image borders). To perform a rotation with
respect to the image center of an M × N image, N,M ∈ N, we use the following
equation:  u

v
1

 = Mrigid(p)

 i − mpr

j − mpc

1

 +

 mpr

mpc

1

 (1.3)

where u, v are the transformed pixel coordinates, yielded by the transformation
of the index positions i, j , i ∈ [1 . . . M], j ∈ [1 . . .N].The point [mpr,mpc]ᵀ is
the midpoint of the image. This procedure moves the image so that its center
coincides with the rotation axis, performs the rotation and translation and shifts
back by [mpr,mpc]ᵀ. No scaling is applied and the resulting image retains the
original size, meaning that points landing out of the image bounds are cut off and
the image is cropped (figure 1.2).

The output pixel positions produced by 1.3 are used to assign the correspond-
ing image intensities of the source pixel positions using the following:

It(u, v) = Is(i, j) (1.4)

where It, Is the transformed and the source image respectively, u, v indices of the
destination image and i, j indices of the source.

Equation 1.3, called a forward mapping, is a straightforward way of image
mapping but has certain disadvantages. Since the resulting set of output pix-
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Figure 1.3: Examples of forward (left) and inverse (right) mapping of a 30 degree
counter clockwise rotation. Since the image canvas is initialized to a default value (zero

in this example) and forward mapping doesn’t update some pixel positions, they show up
as visible gaps in the output image.

els constitutes the transformation’s range, if that transformation is not surjective,
which is often the case, there will be gaps in the output image, namely pixel posi-
tions that did not get assigned to a source pixel. A way around this is to implement
inverse or backward mapping: u

v
1

 = Mrigid(p)

 i − mpr

j − mpc

1

 +

 mpr

mpc

1

 (1.5)

This time, i, j are the output image pixel coordinates, i ∈ [1 . . . M], j ∈ [1 . . .N],
whose inverse transformation M−1

rigid(·) produces a mapping to the source image
position, u, v. Since i, j span the entirety of the output image, every output position
will be assigned via the inverse transformation and no gaps occur. In short, a
forward map connects each source pixel to an output position, whereas an inverse
map assigns each output pixel to a source position. Figure 1.3 illustrates the
difference between forward and inverse mapping. The intensity assignment is
similar to forward mapping, with the indices switched:

It(i, j) = Is(u, v) (1.6)

1.1.3 Interpolation

Digital images are stored in the computer as arrays, with every cells’ position
and value representing the pixel’s position and intensity respectively. This means
that pixel indices have to be natural numbers (with the inclusion of 0, in most
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programming languages). Since the transformation’s output is generally a real
number, the result has to be interpolated with respect to an integer cartesian grid.
For u, v and i, j indices of the output and source images respectively, the intensity
assignment takes the following form.

It(interp(u, v)) = Is(interp(i, j)) (1.7)

where It, Is the transformed and the source image respectively and interp(·) an
interpolation function. The specific application of interpolation functions is of
course variable across programming languages, so 1.7 is just an outline of the
process.

1.2 Diffeomorphisms
1.2.1 Overview

The second experimentation phase applies non rigid transformations to match the
floating image to the reference. Such transformations are not limited to the capa-
bilities of their rigid counterparts, but can apply virtually any effect on their input,
including curving, shearing and arbitrary warps. Specifically, we apply diffeomor-
phic mappings, which are non rigid deformations (warps) with certain favourable
properties.

1.2.2 Definition

Since our goal is to apply such transformations in image registration, they have
to meet certain criteria, including invertibility and smoothness, so that given a
point and its mapping, the existence of an inverse relation is guaranteed, and
small changes in the transformation parameters yield small changes in the out-
put. Transformations that satisfy the above are called diffeomorphisms.

The diffeomorphism construction procedure we follow is similar to grid based
diffeomorphisms described by Cootes et al. [8], where a diffeomorphism is com-
posed of several warps applied by the displacement of a rectangular grid and an
affine transformation. We will continue by introducing the components of diffeo-
morphic mappings.

1.2.3 Affine transformation

An affine transformation is a transformation that preserves straight lines. Viewed
as an expansion from the rigid transformation described in 1.1, it can additionally
scale and shear its input, with the latter no longer considered as a solid object
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but an elastic, deformable membrane. Having R,Fl as our reference and floating
images, we can write:

R = Ta f f ine(p, Fl) (1.8)

where Ta f f ine is the affine transformation function and p a parameter vector.
We use an augmented, 2D affine transformation matrix Ma f f ine:

Ma f f ine =

 a b tr

c d tc

0 0 1

 (1.9)

where tr, tc represent row and column translation, and the parameters a, b, c, d con-
trol rotation,scale and shear (see figure 1.4 for some examples). As with the rigid
case, we keep the image frame fixed by discarding pixels outside its bounds, im-
plement center-wise rotation by displacing the image by the negative of the center
coordinates and use an inverse mapping technique to avoid uninitialized gaps in
the output image :  u

v
1

 = M−1
a f f ine(p)

 i − mpr

j − mpc

1

 +

 mpr

mpc

1

 (1.10)

where [i, j]ᵀ , i ∈ [1 . . . M], j ∈ [1 . . .N] the output pixel indices corresponding to
the point [u, v]ᵀ of the source image via the inverse transformation.

1.2.4 Grid - based deformations

Grid deformations use a set of control points in the image, arranged in a grid at
integer locations. By displacing the grid nodes, we can shift every pixel in the
image by a displacement vector, interpolated with respect to that pixel’s position
relative to the grid. Below a grid deformation function is illustrated.

It = w(p, Is) (1.11)

were It, Is are the transformed and source images, w(·, ·) the deformation function,
and p the parameter vector containing the nodes’ displacements.

We construct the grids recursively, with each level depending on the previous.
For example, the first one consists of a single node at the image center. That
node slices the image to four parts, and the second grid level has four nodes, each
at the center of the slices. A level 3 grid has 16 nodes, and generally a level
n grid contains 4n−1 nodes. Figures 1.5, 1.7 illustrate the grids’ geometry and
construction process.

The support of a node are all the pixels residing between that node and its
immediate neighbours and includes the pixels that node can affect. If the grid
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Figure 1.4: Reference image (upper left) and some examples of affine transformations.

Figure 1.5: From left to right: deformation grid nodes of levels 1,2 and 3 respectively.
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node i, j is displaced by a vector di, j, the displacement dm,n of every pixel in its
support is given by:

dm,n = di, j k(|m − xi, j|) k(|n − yi, j|)+
di+1, j k(|m − xi+1, j|) k(|n − yi+1, j|)+
di, j+1 k(|m − xi, j+1|) k(|n − yi, j+1|)+
di+1, j+1 k(|m − xi+1, j+1|) k(|n − yi+1, j+1|) (1.12)

where i, j are the node’s indices in the logical grid space. This means that the
nodes (i, j), (i+1, j), (i, j+1), (i+1, j+1) form a rectangle, and the pixels within will
be affected by these nodes alone. xi, j, yi, j are the row and column coordinates of
the (i, j)-th node in the image space, m, n are the pixel coordinates in the rectangle
and k(·) is a kernel function to propagate the displacement of the nodes among the
pixels. We use the following trigonometric kernel:

k(x) =
1
2

(1 + cos(πx)) (1.13)

where x is the normalized distance of the pixel from a node. When the four nodes
defining a rectangle are equally displaced, the kernel moves that rectangle by that
displacement without any distortions. Figure 1.6 illustrates the kernel. It can be
shown that the transformation is guaranteed to be diffeomorphic, if all nodes are
displaced by at most | 1

π
| along each dimension. We can include virtual nodes with

zero displacements outside the image borders for completeness and well defined
node support regions.

1.2.5 Composition

We combine a number of grid deformations and an affine transformation to get the
diffeomorphism F:

Fn(·, ·) = TA f f ine(w1(p1,w2(. . .wn−1(pn−1,wn(pn, ·)) . . . )) (1.14)
It = Fn(p, Is) (1.15)

where TA f f ine an affine transformation function, wn(·, ·) a level n grid deforma-
tion function, Fn(·, ·) the diffeomorphism function, with a maximum deformation
grid of level n and p the parameter vector containing the displacements of all
grid deformations wi, i ∈ [1 . . . n]. It, Is are the transformed and source image re-
spectively. pi is the subset of the parameters corresponding to the deformation
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Figure 1.6: The cosine kernel.

wi. Note that higher level (dense grid) deformations are applied first, followed
by the lower level (sparse grid) deformations and the affine transformation. This
means that low scale, fine grain deformations applied by the dense grids will be
carried along with the larger scale warps since the former will be fully contained
in the support of the latter. Figure 1.8 illustrates some examples of diffeomorphic
transformations.
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Figure 1.7: From left to right: level 1 grid, the slices it defines and level 2 grid.

Figure 1.8: Diffeomorphism examples of various parameters for maximum grid level
from 1 to 4.
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1.3 Mutual Information
1.3.1 Overview

Mutual information (MI) is a measure of shared information between random vari-
ables, one of the most studied similarity function in image registration, proposed
as such by Viola and Wells [2] and Collignon et. al [1]. It is widely used due to its
robustness and its few constraint requirements have made it popular in multimodal
registration in medical imaging.

In order to be able to use MI to compare images, we model the latter as ran-
dom variables, with pixel values representing event outcomes and pixel positions
determining where and if these values coincide at an image pair. Since we are
dealing with digital images, it is assumed that all random variables are discrete.

1.3.2 Definition

We begin by defining mutual information. Given two random variables X,Y , their
mutual information I is given by

I(X,Y) =
∑
x∈X

∑
y∈Y

pXY(x, y)logb

(
pXY(x, y)

pX(x)pY(y)

)
(1.16)

where pX(·), pY(·) are the marginal probability distributions of the random vari-
ables X and Y , and pXY(·) their joint distribution. The log factor can be viewed
as measuring a sum of distances between the current joint probability distribution
pXY(·), and the scenario where X and Y are independent, where the images have
no shared information and their joint distribution is a product of their marginal
distributions. Each distance is weighted by the probability of each value pair x, y.
The log base b is hereby omitted and assumed to have the value 2, since it is
convertible to any base, and information is usually measured in bits.

1.3.3 Intuition

To provide additional intuition on this similarity metric, we introduce the concept
of Shannon entropy, H(·).

H(X) = −
∑
x∈X

p(x)log(p(x)) (1.17)

where p(·) is the probability distribution of X. Entropy can be viewed as a
measure of uncertainty about a probabilistic outcome. Random variables with
probability distributions approaching the uniform distribution will have entropy
values approaching the maximum value of log(n), where {x1, x2 . . . xn} is the set of
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Figure 1.9: Entropy value versus the probability of X = heads.
Maximum entropy occurs at the event of a fair coin.

all outcomes. On the contrary, distributions favouring a subset of outcomes will
have a lower entropy value and less uncertainty, since that particular subset of
events will be more likely to occur. This is illustrated in figure 1.9 in an example
of a coin toss. The definitions of conditional and joint entropy are given below.

H(X|Y) = −
∑
x∈X

pX|Y(x, y)log(pX|Y) (1.18)

H(X,Y) = −
∑
x∈X

pXY(x, y)log(pXY(x, y)) (1.19)

where pX|Y(·) is the conditional probability distribution of X given Y . The joint
entropy is the uncertainty surrounding the joint probability distribution of the ran-
dom variables, while conditional entropy refers to the residual uncertainty of the
one after the other is observed.

In order to have full knowledge about the result of a probabilistic experiment a
priori, an amount of information equal to the amount of uncertainty must be avail-
able. In that sense, entropy and information are qualitatively similar measures,
with the one representing the lack of the other. Combining 1.16 and 1.17, it can
be shown that I can be expressed in terms of the marginal and joint entropies of
the random variables.

I(X,Y) = H(X) + H(Y) − H(X,Y) (1.20)
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The following properties also hold.

I(X,Y) ≥ 0 (1.21)
I(X,Y) = H(X) − H(X|Y) (1.22)

= H(Y) − H(Y |X) (1.23)

Equation 1.20 shows that the mutual information surrounding two random
variables X,Y is the sum of the marginal entropies (the case when X and Y are
independent) minus the overall uncertainty associated with X and Y . For two un-
related random variables X and Y , it holds that H(X,Y) = H(X) + H(Y) since no
information is shared and equation 1.20 gives I(X,Y) = 0. Otherwise H(X,Y) <
H(X) + H(Y) and mutual information is the uncertainty reduction from the inde-
pendent case to the configuration that yields the current joint entropy value.

Less residual uncertainty means a lower joint entropy value, thus more infor-
mation is contained in the variable pair and the images represented by the random
variables are better aligned. This is shown more clearly in property 1.22 (sim-
ilarly,in 1.23), where the mutual information of X,Y , is the initial uncertainty
about X, reduced by the residual uncertainty when Y is observed, H(X|Y). In
other words, MI is the information content Y has about X and vice versa.

In image registration, maximizing MI translates into seeking the transforma-
tion that yields image pairs X,Y with the most information content per image
(large marginal entropies) and the most explanatory power they share about one
another (small joint entropy).

1.3.4 Normalized variant

In intensity based registration all of the image pixels are considered in calculat-
ing a similarity value. This can be both redundant and detrimental to successful
registration. Studholme et. al [4] have proposed a normalized variant of mutual
information, where a transformation dependent subsection of the images is piped
to the similarity metric calculation. Normalized mutual information is defined
below.

N(X,Y) =
H(X) + H(Y)

H(X,Y)
(1.24)

This MI variant has been shown to be more robust to cases with variable overlap.
Here, the maximal NMI value of an image pair represented by X,Y will depend
of their joint entropy with respect to the marginal entropies. This deals with the
problem of inappropriately high MI values in suboptimal candidate transforma-
tions where the image background occupies a large portion of the transformed
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Figure 1.11: Reference (left), floating (center-left),transformed floating (center-right)
and consideration overlap in white (right). In NMI, only the white part of the overlap is
considered. Standard MI takes into account the black edges of the transformed floating

image, match them with the corresponding positions of the reference, and lower the
similarity value,despite the fact that the floating image is correctly transformed.

image, as well as backround - related biases of the standard function. We com-
pute NMI in the overlap produced by each transformation. Figure 1.11 illustrates
an example.

1.3.5 Properties

Mutual information works well as an objective function for registration, since its
global optimum is significantly distinguishable from its local ones, especially in
rigid transformations (see figure 1.10).

Section 1.1.3 describes the necessity of interpolating transformed pixels to the
integer pixel grid. This operation introduces interpolation artefacts in the image
that will in turn reduce the mutual information value of the floating and the refer-
ence images, even in cases of correct registration. This bounds the best possible
similarity to a value lower than the self information of the reference image, and
is an obstacle to setting an objective function threshold to the optimizer a pri-
ori. Instead, we test known transformations on images of the same modality and
empirically set the MI threshold at a conservative estimation. In the worst case,
the optimization algorithm will perform the maximum number of iterations. The
introduction of such interpolation artefacts is more severe in cases of non rigid
transformations. Figure 1.12 illustrates some interpolation methods on a warp
deformation of a black and white square pattern.
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c

Figure 1.12: A level 1 warp with a displacement of 4 pixels along each dimension. From
left to right : reference, initial floating, and estimated reconstructed image.
From top to bottom: nearest neighbour, billinear and bicubic interpolation.
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1.4 Particle Swarm Optimization
1.4.1 Overview

Particle Swarm Optimization (PSO) is a fairly recent member of the family of
swarm intelligence algorithms, attributed to Kennedy, Ebenhart and Shi [5] [6]. A
true representative of its class, it adopts a population based approach for finding
an optimal solution, instead of mantaining a centralized control structure. As the
name implies, PSO considers a group of candidate solutions, dubbed a particle
swarm, that moves within the search space. At every step,each particle evalu-
ates its current position via an objective function, and moves to a new position.
The particle’s displacement vector, dubbed velocity, depends on its own experi-
ence and the experience of the rest of the swarm, as private, local and global best
previous positions influence each individual’s new heading and speed.

PSO attempts to simulate natural structures of groups of living organisms, par-
ticularly flocks of birds and fish schools, where although precise and organized
behaviour is observed, analysis and research indicate that such efficiency and com-
plexity is the product of a handful of simple rules between individuals. This con-
cept of cooperation towards a common goal has been established as a sustainable
and advantageous strategy in biological evolution, given the right environment.
PSO follows this paradigm through social sharing of information amongst the
population. Unlike genetic algorithms, PSO lacks an explicit mechanism of com-
bination and evolution of its population members, but focuses on the influence of
social and individual behavioural factors in the swarm.

Because PSO is intrinsically distributed and decentralized, it can fully exploit
modern parallel computing equipment, giving it an edge against traditional algo-
rithms. It is computationally inexpensive, as it only requires the objective func-
tion’s values in the search space, with no gradient information. It makes little to
no assumptions about the nature of the problem, a fact that allows it to be used to
a variety of applications under different conditions.

1.4.2 Algorithm and Parameters

We begin by declaring problem-specific parameters, namely the dimension d of
the problem, the search space per dimension S and the objective function f (·).
This allows the initialization of a swarm consisting of N individuals, where each
particle xi , i = 1..N is a d-dimensional vector placed in the search space and
bounded accordingly. Every one of these vectors represents a candidate solution
to the problem and the quality of each can be measured by the objective function.

Every particle in the swarm has a memory that allows it to keep track of the best
position visited, i.e. the particle’s personal best. In addition, information about
each particle’s best position is communicated amongst the population, meaning
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that every particle can acquire knowledge about the best position of its neighbours.
That neighbourhood can be a subset of the swarm (the case of a local best of each
particle , lbest) or the swarm itself (gbest), resulting in a classification of PSO
variants as local and global PSO respectively.

Having said that, the next step is to move the particles within the search space,
by calculating a velocity vector v for each one. Modern PSO variants use the
following mechanism.

v(t+1)
ik = χ

(
v(t)

ik + c1r(t)
1k

(
p(t)

ik − x(t)
ik

)
+ c2r(t)

2k

(
p(t)

gk − x(t)
ik

))
(1.25)

v(t+1)
ik = χ

(
v(t)

ik + c1r(t)
1k

(
p(t)

ik − x(t)
ik

)
+ c2r(t)

2k

(
l(t)
ik − x(t)

ik

))
(1.26)

x(t+1)
ik = x(t)

ik + v(t+1)
ik (1.27)

where xi, vi, indicate position and velocity vectors respectively, i ∈ [1..N] the par-
ticle index , k ∈ [1..d] the dimension index and pi is the personal best position of
the i-th particle. Equation 1.25 is used in the global PSO scheme, where the index
g is the index of the best particle in the swarm (where its personal best coincides
with the global best). In local PSO (equation 1.26), li signifies the local best po-
sition in the neighbourhood of the i-th particle. In both schemes, the positions are
updated using equation 1.27. The superscripts indicate the time step and r1, r2

are random number vectors, uniformly sampled from [0..1], used to guarantee a
stochastic behaviour of the algorithm. The previous velocity value, v(t)

ik ,serves as
an inertial bias that prevents drastic velocity changes of the particle, serving as a
memory of the previous movement direction. The parameter χ, called the constric-
tion coefficient, acts as a velocity suppressor to control the swarm’s convergence
to an optimal solution. The constants c1 and c2 are weights to each component
of the velocity vector, appropriately called cognitive and social components re-
spectively. Research on stability and convergence of the algorithm suggest the
following relations of χ and c1, c2.

χ =
2

2 − φ −
√
φ2 − 4φ

, φ = c1 + c2 > 4 (1.28)

Usual values of these parameters in related literature are χ = 0.729 and c1 =

c2 = 2.05, which are the ones we use.
Equations 1.25 and 1.26 are vector sums, scaled down by the parameter χ.

The first term simulates an inertial behaviour, the second term is the contribution
of the personal best position, while the third component is the contribution of
either the single global best in the swarm, in the case of global PSO, or the local
best of that particle, in the case of local PSO. These last two terms stochastically
attract each particle in the swarm, and are called cognitive and social components
of the velocity update respectively.
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Following each particle movement, the swarm has to be evaluated again and
the best positions recomputed. This goes on until an acceptable solution is found,
or the maximum number of iterations has been reached.

The PSO algorithm can be summarized in the following steps.

PSO algorithm
1 Randomize swarm positions, set as best positions.
2 Evaluate swarm positions, find gbest/lbest value(s).
3 Calculate velocities and update positions.
4 Evaluate new positions.
5 Update personal and gbest/lbest positions.
6 If solution found or max iterations reached, exit.
7 Go to [3].

Table 1.1: PSO algorithm steps.

The algorithm exits, returning the globally best particle in the swarm.

1.4.3 Particle neighbourhood

While having a global best position in the swarm is unambiguous, in local PSO
one has to specify the criteria by which a particle’s neighbourhood is defined.
This can be visualized by representing the swarm as a graph, with the vertices
representing particles and the edges a neighbour relation between them. In this
representation, global PSO’s neighbourhoods are represented by a fully connected
graph, as each particle is a neighbour of the other,and local PSO requires adopting
a topology to describe the neighbourhood of each particle. Some examples are
illustrated in figure 1.13.

Despite the intuitive way of geometrically defining each neighbourhood via
a distance norm, this proved to cause the particles to form clusters, as the com-
munication network of a group of neighbouring particles would be limited to a
confined subset of the search space, where the local best would reside. A clus-
tered population of particles would limit its search capabilities. Instead, the dis-
tance space used are the particle indices, with the 2m + 1 adjoining particles
xi−m, xi−m−1 . . . xi−1, xi, xi+1 . . . xi+m−1, xi+m making up the neighbourhood of parti-
cle xi, including itself. We will call an m-sized neighbourhood one that a particle
neighbours with m particles at either side in the ring (see figure 1.14). From here
on, any mention of local PSO will assume a neighbourhood structured in the index
space.
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Figure 1.13: From left to right: Star,ring and von Neumann neighbourhood topologies.

Figure 1.14: Index based ring topology with a neighbourhood of size 1.
The neighbours of particle i are the particles indexed i ± 1 modulo N, where N is the

number of particles.
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1.4.4 Exploration and exploitation

As mentioned above, the neighbourhood size can classify PSO to its local and
global variants. This classification is artificial, since global PSO can be viewed as
a local PSO structure, with the local neighbourhood spanning the whole swarm.
Nevertheless, the distinction is made due to the search efficiency the neighbour-
hood size allows and determines.

We say that global and local PSO exhibit different exploitation and exploration
properties. In the first case, since the social component of every particle is the
same, every individual in the swarm is attracted to that single position. This allows
the algorithm converge faster (good exploitation), but also makes it prone to local
optima as areas of the search space may not get visited at all (poor exploration).
On the contrary, local PSO, lacking a universal attractor, allows the particles to
perform a finer search of their surroundings, since the local best positions vary
and are slowly propagated among the population via their index neighbours. This
equips local PSO with better exploration capabilities, but limits its exploitation,
because the local best attraction is varied and thus weaker. Of course, behavioural
change can be achieved by altering the neighbourhood size and the social compo-
nent coefficient, c2.

Obviously, there is a trade off between exploration and exploitation, and se-
lecting which PSO scheme to use depends on the application and the objective
function used.

1.4.5 Unified PSO

Unified PSO (UPSO) is an attempt to utilize the strengths of each PSO scheme,
namely the exploitation and exploration capabilities of global and local PSO re-
spectively.

Recall from 1.25 and 1.26 the global and local velocity updates of a particle
xi. Acquiring these velocities:

G(t+1)
ik = χ

(
v(t)

ik + c1r(t)
1

(
p(t)

ik − x(t)
ik

)
+ c2r(t)

2

(
p(t)

gk − x(t)
ik

))
(1.29)

L(t+1)
ik = χ

(
v(t)

ik + c1r(t)
1

(
p(t)

ik − x(t)
ik

)
+ c2r(t)

2

(
l(t)
ik − x(t)

ik

))
(1.30)

we can calculate a composite velocity vector as the linear combination of the local
and global velocities:

V
(t+1)
ik = (1 − u)G(t+1)

ik + uL(t+1)
ik (1.31)

where u ∈ [0 . . . 1] is a parameter called the unification factor, that controls the
balance between the local and global velocity contribution. Setting u = 1, 1.31
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results in the contemporary local PSO variant and setting u = 0 we get the global
PSO variant. For u ∈ (0 . . . 1), both schemes contribute to the final velocityV(t+1)

ik ,
and we have an instance of unified PSO that combines the exploration and ex-
ploitation capabilities of both schemes. The position of the particles is updated
using equation 1.27, using the composite velocity vector.
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2 Experiments
Overview

In this section we present the experiments performed on rigid and non rigid prob-
lems. The simpler rigid case is tested first producing a favorable parameter set for
the optimizer, on which we base the non rigid configuration later on.

2.1 Rigid case
The first experimentation phase tests the mutual information measure in rigid reg-
istration, using unified PSO as the optimization function. Our goals are to confirm
mutual information’s and UPSO’s effectiveness as registration tools and discover
an adequate parameter set for the optimizer, which we will use at the next phase,
the more complex non rigid registration experiments.

2.1.1 Registration procedure

The problem is set up with a reference image R. We construct an initial floating
image Fl with a set of parameters p, and plug the images in the UPSO algorithm
to discover the corresponding parameter set of the inverse transformation.

Since the images are considered rigid bodies, the feasible solutions are the
set of all 3-tuples [θ, tr, tc]ᵀ, namely image rotation, row and column transla-
tion. To limit the search space, we have imposed maximum parameter values
of ±

[
45, r

3 ,
c
3

]ᵀ
to the parameter vectors, where r, c the image rows and columns

number respectively. This limits rotation, row and column translation to absolute
maxima of 45 degrees, and a third of the image height and width, a reasonable
if not pessimistic assumption on registration problems. The initial floating image
is constructed by a rigid transformation with randomized parameters in this valid
parameter space. For a floating image produced with a parameter vector p, the
transformation that correctly maps it back to the reference is parameterized with
−p. This is achieved by using different trasformation functions: u

v
1

 =

 cos(θ) −sin(θ) tx

sin(θ) cos(θ) ty

0 0 1


−1  i − mpr

j − mpc

1

 +

 mpr

mpc

1

 (1.32)

 u
v
1

 =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


−1  i − mpr + tx

j − mpc + ty
1

 +

 mpr

mpc

1

 (1.33)

Equation 1.32 is the inverse mapping discussed in section 1.1.2 and equation
1.33 is the same transformation, with the difference that translation is performed
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prior to rotation.
The quality of the candidate solutions is measured via the normalized mutual

information metric, negatively signed to model the optimization procedure as a
minimization problem. The image pair is plugged in the UPSO algorithm which
returns a particle xg, the global optimum discovered in the search space:

xg = argmin
x

NMI(R,Trigid(x, Fl)) (1.34)

where Trigid(·, ·) is the rigid transformation function. The particle xg corresponds
to the parameter 3-tuple that minimizes the objective function , NMI(·).

Every parameter 3-tuple is tested by creating a candidate floating image, so in-
terpolation artefacts are introduced, as mentioned in 1.1.3, that limit the optimum
value of the objective function. Figure 1.15 illustrates a flowchart of the general
registration procedure.

2.1.2 Testing

We use a 300 × 300, 8-bit grayscale image of the traditional image processing
benchmark, Lena, in .tif format for our reference, the same one used in previous
sections’ figures for various illustrations.

UPSO parameter optimization

In order to discover an adequate parameter setting for UPSO, we construct three
test images, the first two being heavily transformed to distinguish a parameter
configuration that yields favourable results, and the third to test that configura-
tion. The following table presents the transformation parameters, and figure 1.2
illustrates the images themselves.

Test image number θ tr tc

1 -40 -45 37
2 33 -20 41
3 5 -2 3

Table 1.2: Test images transformation parameters

The UPSO parameters we are interested in optimizing, are the unification fac-
tor u, the swarm size S S , the maximum number of objective function evaluations
f evals, and an additional parameter vdiv, used to modify the maximum particle
velocity per dimension.
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Figure 1.15: Registration flowchart.
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Figure 1.16: From left to right: Test images 1,2 and 3.

For each parameter test image (test images 1 and 2) , we perform 100 experi-
ments for possible values of u. Since u ∈ [0 . . . 1], we divide that interval with a
step of 0.1. We set the rest of the parameters vector of [S S , f evals, vdiv] to a de-
fault value of [30, 3000, 3] and for every 20-tuple of experiments we change one
of these to a candidate value.

Figures 1.18, 1.18 illustrate the success percentage and time elapsed per 100
experiments, versus the unification factor value. The generally poor scores are a
result of the severity of the transformations of the test images 1 and 2. Images
with milder transformations were registered too efficiently for a certain UPSO
parameter setting to distinguish itself. Note that the first test image, being more
heavily transformed (see table 1.2) performs worse than the other on both the
time and success scores.

The plots show that a favourable setting for the unification factor resides in
[0.8, 0.9], as in that interval the success percentage peaks, and the total time
elapsed drops. With regard to the rest of the parameters, the detailed experiment
results seemed to favour a larger swarm size and a smaller particle speed, while
larger function evaluations numbers did not have a significant impact. Setting the
swarm size at a value of 60 particles, the velocity divider per dimension at the
value of 13 and selecting 0.9 as the value for the unification factor, we performed
100 evaluation experiments on the third test image, using the following formula
as an additional posterior check of the registration error.

E =

√√
4∑

i=1

(
creg(i) − cre f (i)

)2
(1.35)

where creg are the positions of the registered transformed image corners, and cre f

the position of the reference corners. This equation sums up the euclidean dis-
tances of the transformed image corners from the corresponding corners of the
reference image. Obviously a greater distance means poorer registration, thus the
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Figure 1.17: Success % versus unification factor value. An optimal value is at [0.8, 0.9].
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[0.8, 0.9].
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error measure. Figure 1.19 displays the error of the evaluation experiments. There
we can see that the set of PSO parameters [u, S S , vdiv, f evals] = [0.9, 60, 13, 3000]
yielded very good registration results, achieving successful registration with sub-
pixel accuraccy in all experiments, with the majority of error being distributed
close to zero. Additional evaluation tests were performed on different evaluation
images, with similar results.
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and the distribution of error, for the evaluation image.
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2.2 Non rigid case
In this set of experiments, we perform non rigid registration of images transformed
with diffeomorphic warps. The parameter set used for UPSO is based on the one
obtained in the rigid tests, with some changes depending on the problem size,
which can get much larger than the rigid case. Additional changes and configu-
rations are tested to try to improve the results of the standard parameter set, with
varying degrees of success.

2.2.1 Registration procedure

We use the same reference image as with the rigid case. The affine transforma-
tion matrix parameters are randomized, distorting an identity matrix by quantities
picked from N

(
0, 2maxa

3

)
, where maxa = 0.05 a maximum distortion. The node dis-

placement vectors are appropriately bounded to ensure the diffeomorphic nature
of the transformation (according to 1.13), setting a maximum row and column
displacement at maxw =

∣∣∣ 1
π

∣∣∣ and picked from N
(
0, 2maxw

3

)
. The initial floating

image Finit is constructed using equations 1.14 , 1.15.
A candidate floating image Flcand is computed in the reverse order of 1.14 to

preserve the distortion of each warp:

Flcand = wn(wn−1(. . .w2(w1(Ta f f ine(Flinit)) . . . )) (1.36)

where wn is a level n warp. The parameter vector is assumed to be passed ac-
cordingly according to 1.14 and is omitted. While Cootes et. al [8] decomposes
the image step by step, dealing with each component at a time and constructing a
new floating image at the end of each registration stage, we take a brute force ap-
proach and search the parameter space of all transformations simultaneously. This
approach removes the dependency of each optimization stage on the previous one
and the problem of early stage misregistration condemning the subsequent stages,
especially in cases when image distortion elements are trying to be accounted for
by the wrong grid levels. In addition, this process doesn’t require intermediate
floating image constructions, so interpolation artefacts are introduced only once.
Thus, in the registration flowchart (figure 1.15), the transformation node includes
all the components of the diffeomorphism, in the correct order described in the
equation above.

A candidate solution vector is a concatenation of the 6 affine parameters with

the nodes’ displacements, resulting in a total of 6 +
n∑

i=1
22i−1 degrees of freedom,

where n is the maximum warp grid level. The best particle xg produced by the
optimizer is defined below.

xg = argmin
x

NMI(R, Fn(x, Flinit)) (1.37)
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where NMI(·, ·) is the normalized mutual information function, Fn(·, ·) the diffeo-
morphism function, R the reference and Flinit the initial floating image.

An estimation of the correct solution vector is obtained by calculating the pa-
rameters of the inverse affine transformation matrix and alternating the sign of the
nodes’ displacements. This is an estimation because interpolation noise skews
the optimal solution away from the prediction, as illustrated in figure 1.12 and
section 1.3.5. In addition, because the grid nodes are fixed, a displaced region
in the initial floating image will have different distances during the construction
and decomposition processes so the displacement vector magnitude will not be
the same. A possible fix to this problem is proposed further below.

We start the experiments by performing 10-tuples of experiments, with PSO
parameters at UF = 0.9, vdiv = 13, S S = 120, f evals = 100 × S S . Figures 1.20
to 1.22 illustrate the registration results, with the leftmost graph representing
NMI score of each experiment, compared with the NMI score of the solution
estimate (red line). The rightmost graph shows the euclidean distance of each
solution to the estimated one. The experiments yield good results for affine only
transformations and for diffeomorphisms with a grid level up to 2 (16 degrees of
freedom), exceeding the NMI value of the estimated solution. The higher grid
level experiments produced suboptimal results.

2.2.2 Improvement attempts

To cope with the size of the problem at grid levels 3 and 4, further UPSO param-
eter tweaking was attempted, using various techniques, including some discussed
by Parsopoulos and Vrahatis [9].

• The trivial and expensive case is to increase UPSO’s capabilities by adopt-
ing larger S S and f evals parameters, to account for the large problem size.
By increasing the swarm size to 200 and the maximum objective function
evaluations to 150 × S S , the improvement was noticeable but the solutions
remained suboptimal.

• Since MI contains insignificant local optima as mentioned in 1.3.5, the
best particle at initialization would have a chance of being near the global
optimum. Because of this, instead of having a constant value for u we apply
an increasing unification factor scheme, at a linear rate. An ascending u
from 0 to 1 (global to local PSO) would make the particles approach the
best position at the early stage of the experiment and gradually perform a
finer search as u approaches 1. Instead, this approach yielded worse results
than the constant u case, even in the grid levels 0 through 2. This means
that in large problem sizes, the good behaviour of MI as an optimization
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function deteriorates and that the large search space lowers the probability
of a particle being initialized near the optimum.

• An opposite scenario is to set u to decrease linearly from 1 to 0 (from lo-
cal to global PSO). In this setting, the particles initially explore the search
space, giving the swarm an opportunity to produce a better best particle
before converging towards that position. This approach produced partially
better results than the standard, constant u configuration. The NMI value
absolute difference and the euclidean distance from the estimated solution
are compared in tables 1.3 and 1.4 respectively, for grid levels 3 and 4, in
the worst and best experiment cases.

– This partial improvement shows that the exploration stage is crucial
to the optimization procedure and should be applied early on. Cer-
tain experiments on grid levels 1 and 2, where the standard UPSO
configuration succeeded, produced suboptimal results, most likely be-
cause the exploration stage was temporally or quantitatively inade-
quate (small portion of the experiment spent on exploration, with in-
sufficiently large u values). Other approaches could adopt a non linear
increase, such as a predefined quantized set favouring large values for
u early on for the better part of each experiment, or an exponential
increasing unification factor.

– The mismatch between the universal improvement of NMI score and
the non universal improvement of the distance from the estimation
could arise from the lack of a fixed test image for these experiments,
as each case was tested with randomized floating images.

Additional possible improvements are listed below.

• The solution of a diffeomorphism to be tested could be estimated better by
allowing the grid nodes of a diffeomorphism during reconstruction to move
prior to displacement. If dn is the displacement vector of node n during
construction and dp the distances of all pixels in its support, pixel-node
distances during reconstruction would be adjusted by −dn in equation 1.12.
This moves the node to the position it had during construction and produces
the exact inverse deformation, since the pixel-node distance in that region
remains the same.This approach however might introduce some complexity
in defining each node’s support during reconstruction.

• In specific applications, where the approximate deformation regions can be
pinpointed prior to registration, a dimensionality reduction technique could
discard some nodes or even whole grid levels.
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Decreasing unification factor
Level Best case Worst case

3 0.16 × 10−2 0.44 × 10−2

4 0.115 × 10−1 0.181 × 10−1

Fixed unification factor (standard)
Level Best case Worst case

3 0.45 × 10−2 0.104 × 10−1

4 0.31 × 10−1 0.402 × 10−1

Table 1.3: Comparison of fixed versus decreasing (local to global PSO) u, illustrating the
NMI distance from the estimation at the worst and best case.

Decreasing unification factor
Level Best case Worst case

3 0.6284 0.8767
4 2.1128 2.6210

Fixed unification factor (standard)
Level Best case Worst case

3 0.5666 0.9245
4 2.3861 2.5368

Table 1.4: Comparison of fixed versus decreasing (local to global PSO) u, illustrating the
euclidean distance from the estimated solution at the worst and best case.
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Figure 1.20: Affine (top) and warp level 1 (bottom) registration results.
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Figure 1.21: Warp level 2 (top) and 3 (bottom) registration results.
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Figure 1.22: Warp level 4 registration results.

2.3 Conclusion
Registration with mutual information and UPSO has been shown to produce good
results in the problem of rigid registration. In the non rigid case, the algorithm’s
efficiency reduces due to the large problem size associated with diffeomorphisms
with a high deformation grid level.While some UPSO parameter settings have
been explored in this study, the algorithm’s plethora of parameters allows for
further manipulation and optimization of its performance. Other UPSO config-
urations, adjustments in calculation and problem structure could provide better
exploration as well as exploitation capabilities and serve as a robust, inexpensive
tool for efficient image registration.
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